These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


702 related items for PubMed ID: 24828396

  • 1. Developing DNA nanotechnology using single-molecule fluorescence.
    Tsukanov R, Tomov TE, Liber M, Berger Y, Nir E.
    Acc Chem Res; 2014 Jun 17; 47(6):1789-98. PubMed ID: 24828396
    [Abstract] [Full Text] [Related]

  • 2. Studying the structural dynamics of bipedal DNA motors with single-molecule fluorescence spectroscopy.
    Masoud R, Tsukanov R, Tomov TE, Plavner N, Liber M, Nir E.
    ACS Nano; 2012 Jul 24; 6(7):6272-83. PubMed ID: 22663255
    [Abstract] [Full Text] [Related]

  • 3. Red light, green light: probing single molecules using alternating-laser excitation.
    Santoso Y, Hwang LC, Le Reste L, Kapanidis AN.
    Biochem Soc Trans; 2008 Aug 24; 36(Pt 4):738-44. PubMed ID: 18631150
    [Abstract] [Full Text] [Related]

  • 4. Nanomechanical molecular devices made of DNA origami.
    Kuzuya A, Ohya Y.
    Acc Chem Res; 2014 Jun 17; 47(6):1742-9. PubMed ID: 24772996
    [Abstract] [Full Text] [Related]

  • 5. DNA Bipedal Motor Achieves a Large Number of Steps Due to Operation Using Microfluidics-Based Interface.
    Tomov TE, Tsukanov R, Glick Y, Berger Y, Liber M, Avrahami D, Gerber D, Nir E.
    ACS Nano; 2017 Apr 25; 11(4):4002-4008. PubMed ID: 28402651
    [Abstract] [Full Text] [Related]

  • 6. A bipedal DNA motor that travels back and forth between two DNA origami tiles.
    Liber M, Tomov TE, Tsukanov R, Berger Y, Nir E.
    Small; 2015 Feb 04; 11(5):568-75. PubMed ID: 25236793
    [Abstract] [Full Text] [Related]

  • 7. Conformational dynamics of DNA hairpins at millisecond resolution obtained from analysis of single-molecule FRET histograms.
    Tsukanov R, Tomov TE, Berger Y, Liber M, Nir E.
    J Phys Chem B; 2013 Dec 19; 117(50):16105-9. PubMed ID: 24261629
    [Abstract] [Full Text] [Related]

  • 8. Detection of single nucleotide polymorphisms using a DNA Holliday junction nanoswitch--a high-throughput fluorescence lifetime assay.
    McGuinness CD, Nishimura MK, Keszenman-Pereyra D, Dickinson P, Campbell CJ, Bachmann TT, Ghazal P, Crain J.
    Mol Biosyst; 2010 Feb 19; 6(2):386-90. PubMed ID: 20094658
    [Abstract] [Full Text] [Related]

  • 9. Advancing Wireframe DNA Nanostructures Using Single-Molecule Fluorescence Microscopy Techniques.
    Platnich CM, Hariri AA, Sleiman HF, Cosa G.
    Acc Chem Res; 2019 Nov 19; 52(11):3199-3210. PubMed ID: 31675207
    [Abstract] [Full Text] [Related]

  • 10. Structural dynamics of nucleic acids by single-molecule FRET.
    Krüger AC, Hildebrandt LL, Kragh SL, Birkedal V.
    Methods Cell Biol; 2013 Nov 19; 113():1-37. PubMed ID: 23317895
    [Abstract] [Full Text] [Related]

  • 11. Nanoscale imaging in DNA nanotechnology.
    Jungmann R, Scheible M, Simmel FC.
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2012 Nov 19; 4(1):66-81. PubMed ID: 22114058
    [Abstract] [Full Text] [Related]

  • 12. Disentangling subpopulations in single-molecule FRET and ALEX experiments with photon distribution analysis.
    Tomov TE, Tsukanov R, Masoud R, Liber M, Plavner N, Nir E.
    Biophys J; 2012 Mar 07; 102(5):1163-73. PubMed ID: 22404939
    [Abstract] [Full Text] [Related]

  • 13. Localized DNA Hybridization Chain Reactions on DNA Origami.
    Bui H, Shah S, Mokhtar R, Song T, Garg S, Reif J.
    ACS Nano; 2018 Feb 27; 12(2):1146-1155. PubMed ID: 29357217
    [Abstract] [Full Text] [Related]

  • 14. Camera-based single-molecule FRET detection with improved time resolution.
    Farooq S, Hohlbein J.
    Phys Chem Chem Phys; 2015 Nov 07; 17(41):27862-72. PubMed ID: 26439729
    [Abstract] [Full Text] [Related]

  • 15. Three-color alternating-laser excitation of single molecules: monitoring multiple interactions and distances.
    Lee NK, Kapanidis AN, Koh HR, Korlann Y, Ho SO, Kim Y, Gassman N, Kim SK, Weiss S.
    Biophys J; 2007 Jan 01; 92(1):303-12. PubMed ID: 17040983
    [Abstract] [Full Text] [Related]

  • 16. Accurate single-molecule FRET studies using multiparameter fluorescence detection.
    Sisamakis E, Valeri A, Kalinin S, Rothwell PJ, Seidel CA.
    Methods Enzymol; 2010 Jan 01; 475():455-514. PubMed ID: 20627168
    [Abstract] [Full Text] [Related]

  • 17. Correlated movement and bending of nucleic acid structures visualized by multicolor single-molecule spectroscopy.
    Person B, Stein IH, Steinhauer C, Vogelsang J, Tinnefeld P.
    Chemphyschem; 2009 Jul 13; 10(9-10):1455-60. PubMed ID: 19499555
    [Abstract] [Full Text] [Related]

  • 18. Detailed study of DNA hairpin dynamics using single-molecule fluorescence assisted by DNA origami.
    Tsukanov R, Tomov TE, Masoud R, Drory H, Plavner N, Liber M, Nir E.
    J Phys Chem B; 2013 Oct 10; 117(40):11932-42. PubMed ID: 24041226
    [Abstract] [Full Text] [Related]

  • 19. Engineering mononucleosomes for single-pair FRET experiments.
    Koopmans WJ, Buning R, van Noort J.
    Methods Mol Biol; 2011 Oct 10; 749():291-303. PubMed ID: 21674380
    [Abstract] [Full Text] [Related]

  • 20. DNA origami as biocompatible surface to match single-molecule and ensemble experiments.
    Gietl A, Holzmeister P, Grohmann D, Tinnefeld P.
    Nucleic Acids Res; 2012 Aug 10; 40(14):e110. PubMed ID: 22523083
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 36.