These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
200 related items for PubMed ID: 24831708
1. Metabolic evolution of two reducing equivalent-conserving pathways for high-yield succinate production in Escherichia coli. Zhu X, Tan Z, Xu H, Chen J, Tang J, Zhang X. Metab Eng; 2014 Jul; 24():87-96. PubMed ID: 24831708 [Abstract] [Full Text] [Related]
2. High-yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli. Meng J, Wang B, Liu D, Chen T, Wang Z, Zhao X. Microb Cell Fact; 2016 Aug 12; 15(1):141. PubMed ID: 27520031 [Abstract] [Full Text] [Related]
3. Redirecting carbon flux through pgi-deficient and heterologous transhydrogenase toward efficient succinate production in Corynebacterium glutamicum. Wang C, Zhou Z, Cai H, Chen Z, Xu H. J Ind Microbiol Biotechnol; 2017 Jul 12; 44(7):1115-1126. PubMed ID: 28303352 [Abstract] [Full Text] [Related]
4. Efficient succinic acid production from glucose through overexpression of pyruvate carboxylase in an Escherichia coli alcohol dehydrogenase and lactate dehydrogenase mutant. Sánchez AM, Bennett GN, San KY. Biotechnol Prog; 2005 Jul 12; 21(2):358-65. PubMed ID: 15801771 [Abstract] [Full Text] [Related]
5. Manipulating pyruvate to acetyl-CoA conversion in Escherichia coli for anaerobic succinate biosynthesis from glucose with the yield close to the stoichiometric maximum. Skorokhodova AY, Morzhakova AA, Gulevich AY, Debabov VG. J Biotechnol; 2015 Nov 20; 214():33-42. PubMed ID: 26362413 [Abstract] [Full Text] [Related]
6. Engineering a synthetic anaerobic respiration for reduction of xylose to xylitol using NADH output of glucose catabolism by Escherichia coli AI21. Iverson A, Garza E, Manow R, Wang J, Gao Y, Grayburn S, Zhou S. BMC Syst Biol; 2016 Apr 16; 10():31. PubMed ID: 27083875 [Abstract] [Full Text] [Related]
7. Enhancement of succinate yield by manipulating NADH/NAD+ ratio and ATP generation. Li J, Li Y, Cui Z, Liang Q, Qi Q. Appl Microbiol Biotechnol; 2017 Apr 16; 101(8):3153-3161. PubMed ID: 28108762 [Abstract] [Full Text] [Related]
8. Dissecting the genetic and metabolic mechanisms of adaptation to the knockout of a major metabolic enzyme in Escherichia coli. Long CP, Gonzalez JE, Feist AM, Palsson BO, Antoniewicz MR. Proc Natl Acad Sci U S A; 2018 Jan 02; 115(1):222-227. PubMed ID: 29255023 [Abstract] [Full Text] [Related]
10. Construction of an energy-conserving glycerol utilization pathways for improving anaerobic succinate production in Escherichia coli. Yu Y, Zhu X, Xu H, Zhang X. Metab Eng; 2019 Dec 02; 56():181-189. PubMed ID: 31600571 [Abstract] [Full Text] [Related]
11. Improving isobutanol production in metabolically engineered Escherichia coli by co-producing ethanol and modulation of pentose phosphate pathway. Liu Z, Liu P, Xiao D, Zhang X. J Ind Microbiol Biotechnol; 2016 Jun 02; 43(6):851-60. PubMed ID: 26946319 [Abstract] [Full Text] [Related]
12. Fermentation of glycerol to succinate by metabolically engineered strains of Escherichia coli. Zhang X, Shanmugam KT, Ingram LO. Appl Environ Microbiol; 2010 Apr 02; 76(8):2397-401. PubMed ID: 20154114 [Abstract] [Full Text] [Related]
14. Metabolic engineering of Escherichia coli to minimize byproduct formate and improving succinate productivity through increasing NADH availability by heterologous expression of NAD(+)-dependent formate dehydrogenase. Balzer GJ, Thakker C, Bennett GN, San KY. Metab Eng; 2013 Nov 02; 20():1-8. PubMed ID: 23876411 [Abstract] [Full Text] [Related]
15. Activating transhydrogenase and NAD kinase in combination for improving isobutanol production. Shi A, Zhu X, Lu J, Zhang X, Ma Y. Metab Eng; 2013 Mar 02; 16():1-10. PubMed ID: 23246519 [Abstract] [Full Text] [Related]
16. Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C. Jantama K, Zhang X, Moore JC, Shanmugam KT, Svoronos SA, Ingram LO. Biotechnol Bioeng; 2008 Dec 01; 101(5):881-93. PubMed ID: 18781696 [Abstract] [Full Text] [Related]
17. Enhanced acetic acid and succinic acid production under microaerobic conditions by Corynebacterium glutamicum harboring Escherichia coli transhydrogenase gene pntAB. Yamauchi Y, Hirasawa T, Nishii M, Furusawa C, Shimizu H. J Gen Appl Microbiol; 2014 Dec 01; 60(3):112-8. PubMed ID: 25008167 [Abstract] [Full Text] [Related]
18. Effect of lpdA gene knockout on the metabolism in Escherichia coli based on enzyme activities, intracellular metabolite concentrations and metabolic flux analysis by 13C-labeling experiments. Li M, Ho PY, Yao S, Shimizu K. J Biotechnol; 2006 Mar 23; 122(2):254-66. PubMed ID: 16310273 [Abstract] [Full Text] [Related]
19. Batch culture characterization and metabolic flux analysis of succinate-producing Escherichia coli strains. Sánchez AM, Bennett GN, San KY. Metab Eng; 2006 May 23; 8(3):209-26. PubMed ID: 16434224 [Abstract] [Full Text] [Related]
20. Targeted optimization of central carbon metabolism for engineering succinate production in Escherichia coli. Zhao Y, Wang CS, Li FF, Liu ZN, Zhao GR. BMC Biotechnol; 2016 Jun 24; 16(1):52. PubMed ID: 27342774 [Abstract] [Full Text] [Related] Page: [Next] [New Search]