These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


505 related items for PubMed ID: 24835931

  • 1. An extremely sensitive aptasensor based on interfacial energy transfer between QDS SAMs and GO.
    Sun X, Liu B, Yang C, Li C.
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Oct 15; 131():288-93. PubMed ID: 24835931
    [Abstract] [Full Text] [Related]

  • 2. Highly-sensitive aptasensor based on fluorescence resonance energy transfer between l-cysteine capped ZnS quantum dots and graphene oxide sheets for the determination of edifenphos fungicide.
    Arvand M, Mirroshandel AA.
    Biosens Bioelectron; 2017 Oct 15; 96():324-331. PubMed ID: 28525850
    [Abstract] [Full Text] [Related]

  • 3. DNA-length-dependent fluorescent sensing based on energy transfer in self-assembled multilayers.
    Sun XY, Liu B, Sun YF, Yu Y.
    Biosens Bioelectron; 2014 Nov 15; 61():466-70. PubMed ID: 24934748
    [Abstract] [Full Text] [Related]

  • 4. Molecular design for enhanced sensitivity of a FRET aptasensor built on the graphene oxide surface.
    Ueno Y, Furukawa K, Matsuo K, Inoue S, Hayashi K, Hibino H.
    Chem Commun (Camb); 2013 Nov 14; 49(88):10346-8. PubMed ID: 23985796
    [Abstract] [Full Text] [Related]

  • 5. Fluorescent aptasensor based on aggregation-induced emission probe and graphene oxide.
    Li X, Ma K, Zhu S, Yao S, Liu Z, Xu B, Yang B, Tian W.
    Anal Chem; 2014 Jan 07; 86(1):298-303. PubMed ID: 24299305
    [Abstract] [Full Text] [Related]

  • 6. Carcino-embryonic antigen detection based on fluorescence resonance energy transfer between quantum dots and graphene oxide.
    Zhou ZM, Zhou J, Chen J, Yu RN, Zhang MZ, Song JT, Zhao YD.
    Biosens Bioelectron; 2014 Sep 15; 59():397-403. PubMed ID: 24768819
    [Abstract] [Full Text] [Related]

  • 7. Highly tunable aptasensing microarrays with graphene oxide multilayers.
    Jung YK, Lee T, Shin E, Kim BS.
    Sci Rep; 2013 Nov 28; 3():3367. PubMed ID: 24284474
    [Abstract] [Full Text] [Related]

  • 8. Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection.
    Chang H, Tang L, Wang Y, Jiang J, Li J.
    Anal Chem; 2010 Mar 15; 82(6):2341-6. PubMed ID: 20180560
    [Abstract] [Full Text] [Related]

  • 9. Turn-on near-infrared electrochemiluminescence sensing of thrombin based on resonance energy transfer between CdTe/CdS coresmall/shellthick quantum dots and gold nanorods.
    Wang J, Jiang X, Han H.
    Biosens Bioelectron; 2016 Aug 15; 82():26-31. PubMed ID: 27031188
    [Abstract] [Full Text] [Related]

  • 10. Exciton energy transfer-based fluorescent sensing through aptamer-programmed self-assembly of quantum dots.
    Liu J, Liu Y, Yang X, Wang K, Wang Q, Shi H, Li L.
    Anal Chem; 2013 Nov 19; 85(22):11121-8. PubMed ID: 24111637
    [Abstract] [Full Text] [Related]

  • 11. Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules.
    Dong H, Gao W, Yan F, Ji H, Ju H.
    Anal Chem; 2010 Jul 01; 82(13):5511-7. PubMed ID: 20524633
    [Abstract] [Full Text] [Related]

  • 12. Graphene Oxide Quantum Dots Assisted Construction of Fluorescent Aptasensor for Rapid Detection of Pseudomonas aeruginosa in Food Samples.
    Gao R, Zhong Z, Gao X, Jia L.
    J Agric Food Chem; 2018 Oct 17; 66(41):10898-10905. PubMed ID: 30247907
    [Abstract] [Full Text] [Related]

  • 13. On-chip FRET Graphene Oxide Aptasensor: Quantitative Evaluation of Enhanced Sensitivity by Aptamer with a Double-stranded DNA Spacer.
    Ueno Y, Furukawa K, Tin A, Hibino H.
    Anal Sci; 2015 Oct 17; 31(9):875-9. PubMed ID: 26353952
    [Abstract] [Full Text] [Related]

  • 14. A graphene oxide platform for the assay of biomolecules based on chemiluminescence resonance energy transfer.
    Bi S, Zhao T, Luo B.
    Chem Commun (Camb); 2012 Jan 04; 48(1):106-8. PubMed ID: 22037540
    [Abstract] [Full Text] [Related]

  • 15. Impedimetric thrombin aptasensor based on chemically modified graphenes.
    Loo AH, Bonanni A, Pumera M.
    Nanoscale; 2012 Jan 07; 4(1):143-7. PubMed ID: 22068751
    [Abstract] [Full Text] [Related]

  • 16. Label-free triple-helix aptamer as sensing platform for "signal-on" fluorescent detection of thrombin.
    Xu N, Wang Q, Lei J, Liu L, Ju H.
    Talanta; 2015 Jan 07; 132():387-91. PubMed ID: 25476322
    [Abstract] [Full Text] [Related]

  • 17. Electrochemical thrombin detection based on the direct interaction of target proteins and graphene oxide as an indicator.
    Choi D, Jeong H, Kim K.
    Analyst; 2014 Mar 21; 139(6):1331-3. PubMed ID: 24479127
    [Abstract] [Full Text] [Related]

  • 18. Graphene oxide/nucleic-acid-stabilized silver nanoclusters: functional hybrid materials for optical aptamer sensing and multiplexed analysis of pathogenic DNAs.
    Liu X, Wang F, Aizen R, Yehezkeli O, Willner I.
    J Am Chem Soc; 2013 Aug 14; 135(32):11832-9. PubMed ID: 23841845
    [Abstract] [Full Text] [Related]

  • 19. A sensitive electrochemiluminescent aptasensor based on perylene derivatives as a novel co-reaction accelerator for signal amplification.
    Yu YQ, Zhang HY, Chai YQ, Yuan R, Zhuo Y.
    Biosens Bioelectron; 2016 Nov 15; 85():8-15. PubMed ID: 27148827
    [Abstract] [Full Text] [Related]

  • 20. Design and fabrication of an aptasensor for chloramphenicol based on energy transfer of CdTe quantum dots to graphene oxide sheet.
    Alibolandi M, Hadizadeh F, Vajhedin F, Abnous K, Ramezani M.
    Mater Sci Eng C Mater Biol Appl; 2015 Mar 15; 48():611-9. PubMed ID: 25579964
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 26.