These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
402 related items for PubMed ID: 24837330
1. Prediction of Young׳s modulus of trabeculae in microscale using macro-scale׳s relationships between bone density and mechanical properties. Cyganik Ł, Binkowski M, Kokot G, Rusin T, Popik P, Bolechała F, Nowak R, Wróbel Z, John A. J Mech Behav Biomed Mater; 2014 Aug; 36():120-34. PubMed ID: 24837330 [Abstract] [Full Text] [Related]
2. Microscale's relationship between Young's modulus and tissue density. Prediction of displacements. Cyganik Ł, Binkowski M, Kokot G, Cyganik P, Rusin T, Bolechała F, Nowak R, Wróbel Z, John A. Comput Methods Biomech Biomed Engin; 2017 Dec; 20(16):1658-1668. PubMed ID: 29169266 [Abstract] [Full Text] [Related]
3. Prediction of bone strength by μCT and MDCT-based finite-element-models: how much spatial resolution is needed? Bauer JS, Sidorenko I, Mueller D, Baum T, Issever AS, Eckstein F, Rummeny EJ, Link TM, Raeth CW. Eur J Radiol; 2014 Jan; 83(1):e36-42. PubMed ID: 24274992 [Abstract] [Full Text] [Related]
6. Comparison of mechanical and ultrasound elastic modulus of ovine tibial cortical bone. Grant CA, Wilson LJ, Langton C, Epari D. Med Eng Phys; 2014 Jul; 36(7):869-74. PubMed ID: 24793408 [Abstract] [Full Text] [Related]
10. Prediction of local proximal tibial subchondral bone structural stiffness using subject-specific finite element modeling: Effect of selected density-modulus relationship. Nazemi SM, Amini M, Kontulainen SA, Milner JS, Holdsworth DW, Masri BA, Wilson DR, Johnston JD. Clin Biomech (Bristol, Avon); 2015 Aug 18; 30(7):703-12. PubMed ID: 26024555 [Abstract] [Full Text] [Related]
11. Reliable simulations of the human proximal femur by high-order finite element analysis validated by experimental observations. Yosibash Z, Trabelsi N, Milgrom C. J Biomech; 2007 Aug 18; 40(16):3688-99. PubMed ID: 17706228 [Abstract] [Full Text] [Related]
12. The influence of the cumulated deformation energy in the measurement by the DSI method on the selected mechanical properties of bone tissues. Makuch AM, Skalski KR, Pawlikowski M. Acta Bioeng Biomech; 2017 Aug 18; 19(2):79-91. PubMed ID: 28869620 [Abstract] [Full Text] [Related]
13. The modified super-ellipsoid yield criterion for human trabecular bone. Bayraktar HH, Gupta A, Kwon RY, Papadopoulos P, Keaveny TM. J Biomech Eng; 2004 Dec 18; 126(6):677-84. PubMed ID: 15796326 [Abstract] [Full Text] [Related]
14. In situ parameter identification of optimal density-elastic modulus relationships in subject-specific finite element models of the proximal femur. Cong A, Buijs JO, Dragomir-Daescu D. Med Eng Phys; 2011 Mar 18; 33(2):164-73. PubMed ID: 21030287 [Abstract] [Full Text] [Related]
15. A novel approach to estimate trabecular bone anisotropy from stress tensors. Hazrati Marangalou J, Ito K, van Rietbergen B. Biomech Model Mechanobiol; 2015 Jan 18; 14(1):39-48. PubMed ID: 24777672 [Abstract] [Full Text] [Related]
16. Trabecular plates and rods determine elastic modulus and yield strength of human trabecular bone. Wang J, Zhou B, Liu XS, Fields AJ, Sanyal A, Shi X, Adams M, Keaveny TM, Guo XE. Bone; 2015 Mar 18; 72():71-80. PubMed ID: 25460571 [Abstract] [Full Text] [Related]
17. Validation of subject-specific automated p-FE analysis of the proximal femur. Trabelsi N, Yosibash Z, Milgrom C. J Biomech; 2009 Feb 09; 42(3):234-41. PubMed ID: 19118831 [Abstract] [Full Text] [Related]