These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


164 related items for PubMed ID: 24840617

  • 1. The effects of confinement on neuronal growth cone morphology and velocity.
    Smirnov MS, Cabral KA, Geller HM, Urbach JS.
    Biomaterials; 2014 Aug; 35(25):6750-7. PubMed ID: 24840617
    [Abstract] [Full Text] [Related]

  • 2. Growth cone guidance and neuron morphology on micropatterned laminin surfaces.
    Clark P, Britland S, Connolly P.
    J Cell Sci; 1993 May; 105 ( Pt 1)():203-12. PubMed ID: 8360274
    [Abstract] [Full Text] [Related]

  • 3. Effects of soluble laminin on organelle transport and neurite growth in cultured mouse dorsal root ganglion neurons: difference between primary neurites and branches.
    Kohno K, Kawakami T, Hiruma H.
    J Cell Physiol; 2005 Nov; 205(2):253-61. PubMed ID: 15887233
    [Abstract] [Full Text] [Related]

  • 4. Cdc42 stimulates neurite outgrowth and formation of growth cone filopodia and lamellipodia.
    Brown MD, Cornejo BJ, Kuhn TB, Bamburg JR.
    J Neurobiol; 2000 Jun 15; 43(4):352-64. PubMed ID: 10861561
    [Abstract] [Full Text] [Related]

  • 5. Morphology and nanomechanics of sensory neurons growth cones following peripheral nerve injury.
    Martin M, Benzina O, Szabo V, Végh AG, Lucas O, Cloitre T, Scamps F, Gergely C.
    PLoS One; 2013 Jun 15; 8(2):e56286. PubMed ID: 23418549
    [Abstract] [Full Text] [Related]

  • 6. Substrate Deformation Predicts Neuronal Growth Cone Advance.
    Athamneh AI, Cartagena-Rivera AX, Raman A, Suter DM.
    Biophys J; 2015 Oct 06; 109(7):1358-71. PubMed ID: 26445437
    [Abstract] [Full Text] [Related]

  • 7. Growth cone-like waves transport actin and promote axonogenesis and neurite branching.
    Flynn KC, Pak CW, Shaw AE, Bradke F, Bamburg JR.
    Dev Neurobiol; 2009 Oct 06; 69(12):761-79. PubMed ID: 19513994
    [Abstract] [Full Text] [Related]

  • 8. Automated laser guidance of neuronal growth cones using a spatial light modulator.
    Carnegie DJ, Cizmár T, Baumgartl J, Gunn-Moore FJ, Dholakia K.
    J Biophotonics; 2009 Nov 06; 2(11):682-92. PubMed ID: 19705368
    [Abstract] [Full Text] [Related]

  • 9. The phosphorylation state of neuronal processes determines growth cone formation after neuronal injury.
    Geddis MS, Rehder V.
    J Neurosci Res; 2003 Oct 15; 74(2):210-20. PubMed ID: 14515350
    [Abstract] [Full Text] [Related]

  • 10. Mammalian growth cone turning assays identify distinct cell signalling mechanisms that underlie axon growth, guidance and regeneration.
    Murray AJ, Peace AG, Tucker SJ, Shewan DA.
    Methods Mol Biol; 2012 Oct 15; 846():167-78. PubMed ID: 22367810
    [Abstract] [Full Text] [Related]

  • 11. Membrane-bound CSPG mediates growth cone outgrowth and substrate specificity by Schwann cell contact with the DRG neuron cell body and not via growth cone contact.
    Castro C, Kuffler DP.
    Exp Neurol; 2006 Jul 15; 200(1):19-25. PubMed ID: 16530184
    [Abstract] [Full Text] [Related]

  • 12. L1/Laminin modulation of growth cone response to EphB triggers growth pauses and regulates the microtubule destabilizing protein SCG10.
    Suh LH, Oster SF, Soehrman SS, Grenningloh G, Sretavan DW.
    J Neurosci; 2004 Feb 25; 24(8):1976-86. PubMed ID: 14985440
    [Abstract] [Full Text] [Related]

  • 13. Rapid growth cone translocation on laminin is supported by lamellipodial not filopodial structures.
    Kleitman N, Johnson MI.
    Cell Motil Cytoskeleton; 1989 Feb 25; 13(4):288-300. PubMed ID: 2776225
    [Abstract] [Full Text] [Related]

  • 14. FRET imaging in nerve growth cones reveals a high level of RhoA activity within the peripheral domain.
    Nakamura T, Aoki K, Matsuda M.
    Brain Res Mol Brain Res; 2005 Oct 03; 139(2):277-87. PubMed ID: 16024133
    [Abstract] [Full Text] [Related]

  • 15. Combined integrin activation and intracellular cAMP cause Rho GTPase dependent growth cone collapse on laminin-1.
    Lemons ML, Condic ML.
    Exp Neurol; 2006 Dec 03; 202(2):324-35. PubMed ID: 16899244
    [Abstract] [Full Text] [Related]

  • 16. Nestin Selectively Facilitates the Phosphorylation of the Lissencephaly-Linked Protein Doublecortin (DCX) by cdk5/p35 to Regulate Growth Cone Morphology and Sema3a Sensitivity in Developing Neurons.
    Bott CJ, McMahon LP, Keil JM, Yap CC, Kwan KY, Winckler B.
    J Neurosci; 2020 May 06; 40(19):3720-3740. PubMed ID: 32273484
    [Abstract] [Full Text] [Related]

  • 17. Micropatterned polymer substrates control alignment of proliferating Schwann cells to direct neuronal regeneration.
    Schmalenberg KE, Uhrich KE.
    Biomaterials; 2005 Apr 06; 26(12):1423-30. PubMed ID: 15482830
    [Abstract] [Full Text] [Related]

  • 18. L1, N-cadherin, and laminin induce distinct distribution patterns of cytoskeletal elements in growth cones.
    Burden-Gulley SM, Lemmon V.
    Cell Motil Cytoskeleton; 1996 Apr 06; 35(1):1-23. PubMed ID: 8874962
    [Abstract] [Full Text] [Related]

  • 19. Comparison of sensory neuron growth cone and filopodial responses to structurally diverse aggrecan variants, in vitro.
    Beller JA, Kulengowski B, Kobraei EM, Curinga G, Calulot CM, Bahrami A, Hering TM, Snow DM.
    Exp Neurol; 2013 Sep 06; 247():143-57. PubMed ID: 23458191
    [Abstract] [Full Text] [Related]

  • 20. Filopodial calcium transients promote substrate-dependent growth cone turning.
    Gomez TM, Robles E, Poo M, Spitzer NC.
    Science; 2001 Mar 09; 291(5510):1983-7. PubMed ID: 11239161
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.