These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Body ram, not suction, is the primary axis of suction-feeding diversity in spiny-rayed fishes. Longo SJ, McGee MD, Oufiero CE, Waltzek TB, Wainwright PC. J Exp Biol; 2016 Jan; 219(Pt 1):119-28. PubMed ID: 26596534 [Abstract] [Full Text] [Related]
23. Biomechanics and hydrodynamics of prey capture in the Chinese giant salamander reveal a high-performance jaw-powered suction feeding mechanism. Heiss E, Natchev N, Gumpenberger M, Weissenbacher A, Van Wassenbergh S. J R Soc Interface; 2013 May 06; 10(82):20121028. PubMed ID: 23466557 [Abstract] [Full Text] [Related]
24. A controllable dual-catapult system inspired by the biomechanics of the dragonfly larvae's predatory strike. Büsse S, Koehnsen A, Rajabi H, Gorb SN. Sci Robot; 2021 Jan 20; 6(50):. PubMed ID: 34043578 [Abstract] [Full Text] [Related]
26. Automated detection of feeding strikes by larval fish using continuous high-speed digital video: a novel method to extract quantitative data from fast, sparse kinematic events. Shamur E, Zilka M, Hassner T, China V, Liberzon A, Holzman R. J Exp Biol; 2016 Jun 01; 219(Pt 11):1608-17. PubMed ID: 26994179 [Abstract] [Full Text] [Related]
27. Origins, Innovations, and Diversification of Suction Feeding in Vertebrates. Wainwright PC, McGee MD, Longo SJ, Hernandez LP. Integr Comp Biol; 2015 Jul 01; 55(1):134-45. PubMed ID: 25920508 [Abstract] [Full Text] [Related]
30. Extremely fast prey capture in pipefish is powered by elastic recoil. Van Wassenbergh S, Strother JA, Flammang BE, Ferry-Graham LA, Aerts P. J R Soc Interface; 2008 Mar 06; 5(20):285-96. PubMed ID: 17626004 [Abstract] [Full Text] [Related]
31. Effects of diet-deprivation and physical stimulation on the feeding behaviour of the larvae of the silkworm, Bombyx mori. Nagata S, Nagasawa H. J Insect Physiol; 2006 Aug 06; 52(8):807-15. PubMed ID: 16828111 [Abstract] [Full Text] [Related]
32. Turbulence, Temperature, and Turbidity: The Ecomechanics of Predator-Prey Interactions in Fishes. Higham TE, Stewart WJ, Wainwright PC. Integr Comp Biol; 2015 Jul 06; 55(1):6-20. PubMed ID: 25980563 [Abstract] [Full Text] [Related]
33. Evaluation of daily rhythms in feeding activity and digestive functions in gilthead sea bream (Sparus (Sparus aurata) larvae. Mata JA, Martínez-Rodríguez G, Moyano FJ, Yúfera M. Commun Agric Appl Biol Sci; 2013 Jul 06; 78(4):269-70. PubMed ID: 25141687 [No Abstract] [Full Text] [Related]
36. Biology and feeding requirements of larval hunter flies Coenosia attenuata (Diptera: Muscidae) reared on larvae of the fungus gnat Bradysia impatiens (Diptera: Sciaridae). Ugine TA, Sensenbach EJ, Sanderson JP, Wraight SP. J Econ Entomol; 2010 Aug 06; 103(4):1149-58. PubMed ID: 20857722 [Abstract] [Full Text] [Related]
37. Effect of acute low body temperature on predatory behavior and prey-capture efficiency in a plethodontid salamander. Marvin GA, Davis K, Dawson J. Physiol Behav; 2016 May 01; 158():121-7. PubMed ID: 26939728 [Abstract] [Full Text] [Related]
39. Close encounters with eddies: oceanographic features increase growth of larval reef fishes during their journey to the reef. Shulzitski K, Sponaugle S, Hauff M, Walter K, D'Alessandro EK, Cowen RK. Biol Lett; 2015 Jan 01; 11(1):20140746. PubMed ID: 25631227 [Abstract] [Full Text] [Related]
40. Independent Evolution of Suction Feeding in Neobatrachia: Feeding Mechanisms in Two Species of Telmatobius (Anura:Telmatobiidae). Barrionuevo JS. Anat Rec (Hoboken); 2016 Feb 01; 299(2):181-96. PubMed ID: 26575038 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]