These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
161 related items for PubMed ID: 24848739
21. Mixed anion control of enhanced negative thermal expansion in the oxysulfide of PbTiO3. Pan Z, Liang Z, Wang X, Fang YW, Ye X, Liu Z, Nishikubo T, Sakai Y, Shen X, Liu Q, Kawaguchi S, Zhan F, Fan L, Wang YY, Ma CY, Jiang X, Lin Z, Yu R, Xing X, Azuma M, Long Y. Mater Horiz; 2024 Oct 28; 11(21):5394-5401. PubMed ID: 39162707 [Abstract] [Full Text] [Related]
22. Significant Enhancement of Negative Thermal Expansion Under Low Pressure in Cu2P2O7. Shi N, Fan L, Xu Y, Yin W, Chen H, Yuan B, Zhou C, Chen J. Small; 2024 Oct 28; 20(42):e2312289. PubMed ID: 38924308 [Abstract] [Full Text] [Related]
23. Colossal negative thermal expansion in reduced layered ruthenate. Takenaka K, Okamoto Y, Shinoda T, Katayama N, Sakai Y. Nat Commun; 2017 Jan 10; 8():14102. PubMed ID: 28071647 [Abstract] [Full Text] [Related]
24. Transformation of Thermal Expansion from Large Volume Contraction to Nonlinear Strong Negative Thermal Expansion in PbTiO3-Bi(Co1-xFex)O3 Perovskites. Pan Z, Jiang X, Yu R, Ren Y, Lin Z, Chen J, Azuma M, Xing X. ACS Appl Mater Interfaces; 2022 May 11. PubMed ID: 35544726 [Abstract] [Full Text] [Related]
25. Negative thermal expansion in cubic FeFe(CN)6 Prussian blue analogues. Shi N, Gao Q, Sanson A, Li Q, Fan L, Ren Y, Olivi L, Chen J, Xing X. Dalton Trans; 2019 Mar 12; 48(11):3658-3663. PubMed ID: 30762851 [Abstract] [Full Text] [Related]
26. Negative thermal expansion in 2H CuScO2 originating from the cooperation of transverse thermal vibrations of Cu and O atoms. Chang D, Yu W, Sun Q, Jia Y. Phys Chem Chem Phys; 2017 Jan 18; 19(3):2067-2072. PubMed ID: 28044172 [Abstract] [Full Text] [Related]
27. Magnetocaloric effect and negative thermal expansion in hexagonal Fe doped MnNiGe compounds with a magnetoelastic AFM-FM-like transition. Xu K, Li Z, Liu E, Zhou H, Zhang Y, Jing C. Sci Rep; 2017 Jan 30; 7():41675. PubMed ID: 28134355 [Abstract] [Full Text] [Related]
28. Magnetism and magnetic structures of PrMn2Ge2-xSix. Wang JL, Campbell SJ, Hofmann M, Kennedy SJ, Zeng R, Md Din MF, Dou SX, Arulraj A, Stusser N. J Phys Condens Matter; 2013 Sep 25; 25(38):386003. PubMed ID: 23988490 [Abstract] [Full Text] [Related]
29. Transforming Thermal Expansion from Positive to Negative: The Case of Cubic Magnetic Compounds of (Zr,Nb)Fe2. Song Y, Sun Q, Yokoyama T, Zhu H, Li Q, Huang R, Ren Y, Huang Q, Xing X, Chen J. J Phys Chem Lett; 2020 Mar 05; 11(5):1954-1961. PubMed ID: 32073860 [Abstract] [Full Text] [Related]
30. Crystal and magnetic structure of the R15Si9C compounds (R = Ho, Er, Tb). Ritter C, Wrubl F, Hill AH, Pani M, Manfrinetti P. J Phys Condens Matter; 2011 Jul 27; 23(29):296002. PubMed ID: 21715952 [Abstract] [Full Text] [Related]
31. Pronounced negative thermal expansion from a simple structure: cubic ScF(3). Greve BK, Martin KL, Lee PL, Chupas PJ, Chapman KW, Wilkinson AP. J Am Chem Soc; 2010 Nov 10; 132(44):15496-8. PubMed ID: 20958035 [Abstract] [Full Text] [Related]
32. Zero thermal expansion and ferromagnetism in cubic Sc(1-x)M(x)F3 (M = Ga, Fe) over a wide temperature range. Hu L, Chen J, Fan L, Ren Y, Rong Y, Pan Z, Deng J, Yu R, Xing X. J Am Chem Soc; 2014 Oct 01; 136(39):13566-9. PubMed ID: 25233253 [Abstract] [Full Text] [Related]
33. Quartz: structural and thermodynamic analyses across the α ↔ β transition with origin of negative thermal expansion (NTE) in β quartz and calcite. Antao SM. Acta Crystallogr B Struct Sci Cryst Eng Mater; 2016 Apr 01; 72(Pt 2):249-62. PubMed ID: 27048727 [Abstract] [Full Text] [Related]
34. Tailoring Negative Thermal Expansion via Tunable Induced Strain in La-Fe-Si-Based Multifunctional Material. Fleming RO, Gonçalves S, Davarpanah A, Radulov I, Pfeuffer L, Beckmann B, Skokov K, Ren Y, Li T, Evans J, Amaral J, Almeida R, Lopes A, Oliveira G, Araújo JP, Apolinário A, Belo JH. ACS Appl Mater Interfaces; 2022 Sep 28; 14(38):43498-43507. PubMed ID: 36099579 [Abstract] [Full Text] [Related]
35. Negative thermal expansion in functional materials: controllable thermal expansion by chemical modifications. Chen J, Hu L, Deng J, Xing X. Chem Soc Rev; 2015 Jun 07; 44(11):3522-67. PubMed ID: 25864730 [Abstract] [Full Text] [Related]
36. Manipulating Ce Valence in RE2Fe14B Tetragonal Compounds by La-Ce Co-doping: Resultant Crystallographic and Magnetic Anomaly. Jin J, Zhang Y, Bai G, Qian Z, Wu C, Ma T, Shen B, Yan M. Sci Rep; 2016 Jul 26; 6():30194. PubMed ID: 27457408 [Abstract] [Full Text] [Related]
37. Role of "Dumbbell" Pairs of Fe in Spin Alignments and Negative Thermal Expansion of Lu2Fe17-Based Intermetallic Compounds. Cao Y, Lin K, Liu Z, Hu J, Wang CW, Tereshina-Chitrova E, Kato K, Li Q, Deng J, Chen J, Zhang H, Xing X. Inorg Chem; 2020 Aug 17; 59(16):11228-11232. PubMed ID: 32799469 [Abstract] [Full Text] [Related]
38. Crystal structure and thermal expansion of Mn(1-x)Fe(x)Ge. Dyadkin V, Grigoriev S, Ovsyannikov SV, Bykova E, Dubrovinsky L, Tsvyashchenko A, Fomicheva LN, Chernyshov D. Acta Crystallogr B Struct Sci Cryst Eng Mater; 2014 Aug 17; 70(Pt 4):676-80. PubMed ID: 25080246 [Abstract] [Full Text] [Related]
39. Effect of cobalt doping on the structural, magnetic and abnormal thermal expansion properties of NaZn13-type La(Fe1-xCox)11.4Al1.6 compounds. Zhao Y, Huang R, Li S, Wang W, Jiang X, Lin Z, Li J, Li L. Phys Chem Chem Phys; 2016 Jul 27; 18(30):20276-80. PubMed ID: 27411397 [Abstract] [Full Text] [Related]
40. Adjustable Magnetic Phase Transition Inducing Unusual Zero Thermal Expansion in Cubic RCo2-Based Intermetallic Compounds (R = Rare Earth). Hu J, Lin K, Cao Y, Yu C, Li W, Huang R, Fischer HE, Kato K, Song Y, Chen J, Zhang H, Xing X. Inorg Chem; 2019 May 06; 58(9):5401-5405. PubMed ID: 31017403 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]