These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
44. Sox9 directs hypertrophic maturation and blocks osteoblast differentiation of growth plate chondrocytes. Dy P, Wang W, Bhattaram P, Wang Q, Wang L, Ballock RT, Lefebvre V. Dev Cell; 2012 Mar 13; 22(3):597-609. PubMed ID: 22421045 [Abstract] [Full Text] [Related]
47. Targeting Runx2 expression in hypertrophic chondrocytes impairs endochondral ossification during early skeletal development. Ding M, Lu Y, Abbassi S, Li F, Li X, Song Y, Geoffroy V, Im HJ, Zheng Q. J Cell Physiol; 2012 Oct 13; 227(10):3446-56. PubMed ID: 22223437 [Abstract] [Full Text] [Related]
48. Skeletal Deformities in Osterix-Cre;Tgfbr2f/f Mice May Cause Postnatal Death. Corps K, Stanwick M, Rectenwald J, Kruggel A, Peters SB. Genes (Basel); 2021 Jun 25; 12(7):. PubMed ID: 34202311 [Abstract] [Full Text] [Related]
49. Zfp521 controls bone mass by HDAC3-dependent attenuation of Runx2 activity. Hesse E, Saito H, Kiviranta R, Correa D, Yamana K, Neff L, Toben D, Duda G, Atfi A, Geoffroy V, Horne WC, Baron R. J Cell Biol; 2010 Dec 27; 191(7):1271-83. PubMed ID: 21173110 [Abstract] [Full Text] [Related]
52. Cbfa1: a molecular switch in osteoblast biology. Ducy P. Dev Dyn; 2000 Dec 27; 219(4):461-71. PubMed ID: 11084646 [Abstract] [Full Text] [Related]
53. Abnormal bone remodelling activity of dental follicle cells from a cleidocranial dysplasia patient. Liu Y, Zhang X, Sun X, Wang X, Zhang C, Zheng S. Oral Dis; 2018 Oct 27; 24(7):1270-1281. PubMed ID: 29787635 [Abstract] [Full Text] [Related]
54. Osteogenesis requires FAK-dependent collagen synthesis by fibroblasts and osteoblasts. Rajshankar D, Wang Y, McCulloch CA. FASEB J; 2017 Mar 27; 31(3):937-953. PubMed ID: 27881487 [Abstract] [Full Text] [Related]
55. SATB2 is a multifunctional determinant of craniofacial patterning and osteoblast differentiation. Dobreva G, Chahrour M, Dautzenberg M, Chirivella L, Kanzler B, Fariñas I, Karsenty G, Grosschedl R. Cell; 2006 Jun 02; 125(5):971-86. PubMed ID: 16751105 [Abstract] [Full Text] [Related]
56. Core Binding Factor-β Knockdown Alters Ovarian Gene Expression and Function in the Mouse. Wilson K, Park J, Curry TE, Mishra B, Gossen J, Taniuchi I, Jo M. Mol Endocrinol; 2016 Jul 02; 30(7):733-47. PubMed ID: 27176614 [Abstract] [Full Text] [Related]
57. microRNA-31 inhibition partially ameliorates the deficiency of bone marrow stromal cells from cleidocranial dysplasia. Xu L, Fu Y, Zhu W, Xu R, Zhang J, Zhang P, Cheng J, Jiang H. J Cell Biochem; 2019 Jun 02; 120(6):9472-9486. PubMed ID: 30506733 [Abstract] [Full Text] [Related]
58. Dysregulation of chondrogenesis in human cleidocranial dysplasia. Zheng Q, Sebald E, Zhou G, Chen Y, Wilcox W, Lee B, Krakow D. Am J Hum Genet; 2005 Aug 02; 77(2):305-12. PubMed ID: 15952089 [Abstract] [Full Text] [Related]
59. Epiphyseal chondrocyte secondary ossification centers require thyroid hormone activation of Indian hedgehog and osterix signaling. Xing W, Cheng S, Wergedal J, Mohan S. J Bone Miner Res; 2014 Oct 02; 29(10):2262-75. PubMed ID: 24753031 [Abstract] [Full Text] [Related]
60. The cleidocranial dysplasia-related R131G mutation in the Runt-related transcription factor RUNX2 disrupts binding to DNA but not CBF-beta. Han MS, Kim HJ, Wee HJ, Lim KE, Park NR, Bae SC, van Wijnen AJ, Stein JL, Lian JB, Stein GS, Choi JY. J Cell Biochem; 2010 May 02; 110(1):97-103. PubMed ID: 20225274 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]