These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


172 related items for PubMed ID: 24853272

  • 1. A nucleation-based method to study hydrophobic interactions under confinement: enhanced hydrophobic association driven by energetic contributions.
    Kim H, Keasler SJ, Chen B.
    J Phys Chem B; 2014 Jun 19; 118(24):6875-84. PubMed ID: 24853272
    [Abstract] [Full Text] [Related]

  • 2. Enhancing the hydrophobic effect in confined water nanodrops.
    Rao PV, Gandhi KS, Ayappa KG.
    Langmuir; 2007 Dec 18; 23(26):12795-8. PubMed ID: 17994776
    [Abstract] [Full Text] [Related]

  • 3. Thermodynamic and structural signatures of water-driven methane-methane attraction in coarse-grained mW water.
    Song B, Molinero V.
    J Chem Phys; 2013 Aug 07; 139(5):054511. PubMed ID: 23927274
    [Abstract] [Full Text] [Related]

  • 4. Potential of mean force of hydrophobic association: dependence on solute size.
    Sobolewski E, Makowski M, Czaplewski C, Liwo A, Ołdziej S, Scheraga HA.
    J Phys Chem B; 2007 Sep 13; 111(36):10765-74. PubMed ID: 17713937
    [Abstract] [Full Text] [Related]

  • 5. Anti-cooperativity and cooperativity in hydrophobic interactions: Three-body free energy landscapes and comparison with implicit-solvent potential functions for proteins.
    Shimizu S, Chan HS.
    Proteins; 2002 Jul 01; 48(1):15-30. PubMed ID: 12012334
    [Abstract] [Full Text] [Related]

  • 6. Molecular simulation study of cooperativity in hydrophobic association.
    Czaplewski C, Rodziewicz-Motowidło S, Liwo A, Ripoll DR, Wawak RJ, Scheraga HA.
    Protein Sci; 2000 Jun 01; 9(6):1235-45. PubMed ID: 10892816
    [Abstract] [Full Text] [Related]

  • 7. Potential of mean force between hydrophobic solutes in the Jagla model of water and implications for cold denaturation of proteins.
    Maiti M, Weiner S, Buldyrev SV, Stanley HE, Sastry S.
    J Chem Phys; 2012 Jan 28; 136(4):044512. PubMed ID: 22299896
    [Abstract] [Full Text] [Related]

  • 8. Hydrophobic and ionic interactions in nanosized water droplets.
    Vaitheeswaran S, Thirumalai D.
    J Am Chem Soc; 2006 Oct 18; 128(41):13490-6. PubMed ID: 17031962
    [Abstract] [Full Text] [Related]

  • 9. Free energy profiles for penetration of methane and water molecules into spherical sodium dodecyl sulfate micelles obtained using the thermodynamic integration method combined with molecular dynamics calculations.
    Fujimoto K, Yoshii N, Okazaki S.
    J Chem Phys; 2012 Jan 07; 136(1):014511. PubMed ID: 22239793
    [Abstract] [Full Text] [Related]

  • 10. Contributions of solvent-solvent hydrogen bonding and van der Waals interactions to the attraction between methane molecules in water.
    Rank JA, Baker D.
    Biophys Chem; 1998 Apr 20; 71(2-3):199-204. PubMed ID: 9648207
    [Abstract] [Full Text] [Related]

  • 11. Effect of trimethylamine-N-oxide on pressure-induced dissolution of hydrophobic solute.
    Sarma R, Paul S.
    J Chem Phys; 2012 Sep 21; 137(11):114503. PubMed ID: 22998267
    [Abstract] [Full Text] [Related]

  • 12. Towards temperature-dependent coarse-grained potentials of side-chain interactions for protein folding simulations. I: molecular dynamics study of a pair of methane molecules in water at various temperatures.
    Sobolewski E, Makowski M, Oldziej S, Czaplewski C, Liwo A, Scheraga HA.
    Protein Eng Des Sel; 2009 Sep 21; 22(9):547-52. PubMed ID: 19556395
    [Abstract] [Full Text] [Related]

  • 13. Does a pair of methane molecules aggregate in water?
    Akin-Ojo O, Szalewicz K.
    J Chem Phys; 2019 Feb 28; 150(8):084501. PubMed ID: 30823769
    [Abstract] [Full Text] [Related]

  • 14. Hydrophobic interactions between methane and a nanoscopic pocket: three dimensional distribution of potential of mean force revealed by computer simulations.
    Setny P.
    J Chem Phys; 2008 Mar 28; 128(12):125105. PubMed ID: 18376980
    [Abstract] [Full Text] [Related]

  • 15. Free energy barriers to evaporation of water in hydrophobic confinement.
    Sharma S, Debenedetti PG.
    J Phys Chem B; 2012 Nov 08; 116(44):13282-9. PubMed ID: 23075275
    [Abstract] [Full Text] [Related]

  • 16. Salting-Out of Methane in the Aqueous Solutions of Urea and Glycine-Betaine.
    Dixit MK, Siddique AA, Tembe BL.
    J Phys Chem B; 2015 Aug 27; 119(34):10941-53. PubMed ID: 25965507
    [Abstract] [Full Text] [Related]

  • 17. Monte Carlo simulations of the hydrophobic effect in aqueous electrolyte solutions.
    Jönsson M, Skepö M, Linse P.
    J Phys Chem B; 2006 May 04; 110(17):8782-8. PubMed ID: 16640436
    [Abstract] [Full Text] [Related]

  • 18. Thermodynamics of fluid conduction through hydrophobic channel of carbon nanotubes: the exciting force for filling of nanotubes with polar and nonpolar fluids.
    Sahu P, Ali SM, Shenoy KT.
    J Chem Phys; 2015 Feb 21; 142(7):074501. PubMed ID: 25702017
    [Abstract] [Full Text] [Related]

  • 19. Molecular simulation study of cooperativity in hydrophobic association: clusters of four hydrophobic particles.
    Czaplewski C, Rodziewicz-Motowidło S, Dabal M, Liwo A, Ripoll DR, Scheraga HA.
    Biophys Chem; 2003 Sep 21; 105(2-3):339-59. PubMed ID: 14499903
    [Abstract] [Full Text] [Related]

  • 20. Single water entropy: hydrophobic crossover and application to drug binding.
    Sasikala WD, Mukherjee A.
    J Phys Chem B; 2014 Sep 11; 118(36):10553-64. PubMed ID: 25133988
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.