These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


127 related items for PubMed ID: 24855269

  • 1. Rapid Hebbian axonal remodeling mediated by visual stimulation.
    Munz M, Gobert D, Schohl A, Poquérusse J, Podgorski K, Spratt P, Ruthazer ES.
    Science; 2014 May 23; 344(6186):904-9. PubMed ID: 24855269
    [Abstract] [Full Text] [Related]

  • 2. Presynaptic protein kinase C controls maturation and branch dynamics of developing retinotectal arbors: possible role in activity-driven sharpening.
    Schmidt JT, Fleming MR, Leu B.
    J Neurobiol; 2004 Feb 15; 58(3):328-40. PubMed ID: 14750146
    [Abstract] [Full Text] [Related]

  • 3. Regulation of retinal ganglion cell axon arbor size by target availability: mechanisms of compression and expansion of the retinotectal projection.
    Xiong M, Pallas SL, Lim S, Finlay BL.
    J Comp Neurol; 1994 Jun 22; 344(4):581-97. PubMed ID: 7929893
    [Abstract] [Full Text] [Related]

  • 4. BDNF stabilizes synapses and maintains the structural complexity of optic axons in vivo.
    Hu B, Nikolakopoulou AM, Cohen-Cory S.
    Development; 2005 Oct 22; 132(19):4285-98. PubMed ID: 16141221
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Netrin participates in the development of retinotectal synaptic connectivity by modulating axon arborization and synapse formation in the developing brain.
    Manitt C, Nikolakopoulou AM, Almario DR, Nguyen SA, Cohen-Cory S.
    J Neurosci; 2009 Sep 09; 29(36):11065-77. PubMed ID: 19741113
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Developmental period for N-methyl-D-aspartate (NMDA) receptor-dependent synapse elimination correlated with visuotopic map refinement.
    Colonnese MT, Constantine-Paton M.
    J Comp Neurol; 2006 Feb 10; 494(5):738-51. PubMed ID: 16374812
    [Abstract] [Full Text] [Related]

  • 13. Electrophysiological Approaches to Studying Normal and Abnormal Retinotectal Circuit Development in the Xenopus Tadpole.
    Pratt KG.
    Cold Spring Harb Protoc; 2021 Nov 01; 2021(11):. PubMed ID: 33536288
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Rapid BDNF-induced retrograde synaptic modification in a developing retinotectal system.
    Du JL, Poo MM.
    Nature; 2004 Jun 24; 429(6994):878-83. PubMed ID: 15215865
    [Abstract] [Full Text] [Related]

  • 18. MK801 increases retinotectal arbor size in developing zebrafish without affecting kinetics of branch elimination and addition.
    Schmidt JT, Buzzard M, Borress R, Dhillon S.
    J Neurobiol; 2000 Feb 15; 42(3):303-14. PubMed ID: 10645970
    [Abstract] [Full Text] [Related]

  • 19. Hebbian instruction of axonal connectivity by endogenous correlated spontaneous activity.
    Matsumoto N, Barson D, Liang L, Crair MC.
    Science; 2024 Aug 16; 385(6710):eadh7814. PubMed ID: 39146415
    [Abstract] [Full Text] [Related]

  • 20. NMDA receptor activity stabilizes presynaptic retinotectal axons and postsynaptic optic tectal cell dendrites in vivo.
    Rajan I, Witte S, Cline HT.
    J Neurobiol; 1999 Feb 15; 38(3):357-68. PubMed ID: 10022578
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.