These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


141 related items for PubMed ID: 24860165

  • 41. Identification of coupling DNA motif pairs on long-range chromatin interactions in human K562 cells.
    Wong KC, Li Y, Peng C.
    Bioinformatics; 2016 Feb 01; 32(3):321-4. PubMed ID: 26411866
    [Abstract] [Full Text] [Related]

  • 42. A Monte Carlo-based framework enhances the discovery and interpretation of regulatory sequence motifs.
    Seitzer P, Wilbanks EG, Larsen DJ, Facciotti MT.
    BMC Bioinformatics; 2012 Nov 27; 13():317. PubMed ID: 23181585
    [Abstract] [Full Text] [Related]

  • 43. Integrative analysis of public ChIP-seq experiments reveals a complex multi-cell regulatory landscape.
    Griffon A, Barbier Q, Dalino J, van Helden J, Spicuglia S, Ballester B.
    Nucleic Acids Res; 2015 Feb 27; 43(4):e27. PubMed ID: 25477382
    [Abstract] [Full Text] [Related]

  • 44. Comprehensive discovery of DNA motifs in 349 human cells and tissues reveals new features of motifs.
    Zheng Y, Li X, Hu H.
    Nucleic Acids Res; 2015 Jan 27; 43(1):74-83. PubMed ID: 25505144
    [Abstract] [Full Text] [Related]

  • 45. A highly efficient and effective motif discovery method for ChIP-seq/ChIP-chip data using positional information.
    Ma X, Kulkarni A, Zhang Z, Xuan Z, Serfling R, Zhang MQ.
    Nucleic Acids Res; 2012 Apr 27; 40(7):e50. PubMed ID: 22228832
    [Abstract] [Full Text] [Related]

  • 46. Cross-species de novo identification of cis-regulatory modules with GibbsModule: application to gene regulation in embryonic stem cells.
    Xie D, Cai J, Chia NY, Ng HH, Zhong S.
    Genome Res; 2008 Aug 27; 18(8):1325-35. PubMed ID: 18490265
    [Abstract] [Full Text] [Related]

  • 47. MEME SUITE: tools for motif discovery and searching.
    Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS.
    Nucleic Acids Res; 2009 Jul 27; 37(Web Server issue):W202-8. PubMed ID: 19458158
    [Abstract] [Full Text] [Related]

  • 48. BML: a versatile web server for bipartite motif discovery.
    Vahed M, Vahed M, Garmire LX.
    Brief Bioinform; 2022 Jan 17; 23(1):. PubMed ID: 34974623
    [Abstract] [Full Text] [Related]

  • 49. CoMoDis: composite motif discovery in mammalian genomes.
    Donaldson IJ, Göttgens B.
    Nucleic Acids Res; 2007 Jan 17; 35(1):e1. PubMed ID: 17130158
    [Abstract] [Full Text] [Related]

  • 50. TFmotifView: a webserver for the visualization of transcription factor motifs in genomic regions.
    Leporcq C, Spill Y, Balaramane D, Toussaint C, Weber M, Bardet AF.
    Nucleic Acids Res; 2020 Jul 02; 48(W1):W208-W217. PubMed ID: 32324215
    [Abstract] [Full Text] [Related]

  • 51. Improving analysis of transcription factor binding sites within ChIP-Seq data based on topological motif enrichment.
    Worsley Hunt R, Mathelier A, Del Peso L, Wasserman WW.
    BMC Genomics; 2014 Jun 13; 15(1):472. PubMed ID: 24927817
    [Abstract] [Full Text] [Related]

  • 52. Identification of Predictive Cis-Regulatory Elements Using a Discriminative Objective Function and a Dynamic Search Space.
    Karnik R, Beer MA.
    PLoS One; 2015 Jun 13; 10(10):e0140557. PubMed ID: 26465884
    [Abstract] [Full Text] [Related]

  • 53. CEAS: cis-regulatory element annotation system.
    Ji X, Li W, Song J, Wei L, Liu XS.
    Nucleic Acids Res; 2006 Jul 01; 34(Web Server issue):W551-4. PubMed ID: 16845068
    [Abstract] [Full Text] [Related]

  • 54. Seten: a tool for systematic identification and comparison of processes, phenotypes, and diseases associated with RNA-binding proteins from condition-specific CLIP-seq profiles.
    Budak G, Srivastava R, Janga SC.
    RNA; 2017 Jun 01; 23(6):836-846. PubMed ID: 28336542
    [Abstract] [Full Text] [Related]

  • 55. YMF: A program for discovery of novel transcription factor binding sites by statistical overrepresentation.
    Sinha S, Tompa M.
    Nucleic Acids Res; 2003 Jul 01; 31(13):3586-8. PubMed ID: 12824371
    [Abstract] [Full Text] [Related]

  • 56. Identification of co-occurring transcription factor binding sites from DNA sequence using clustered position weight matrices.
    Oh YM, Kim JK, Choi S, Yoo JY.
    Nucleic Acids Res; 2012 Mar 01; 40(5):e38. PubMed ID: 22187154
    [Abstract] [Full Text] [Related]

  • 57. Role of ChIP-seq in the discovery of transcription factor binding sites, differential gene regulation mechanism, epigenetic marks and beyond.
    Mundade R, Ozer HG, Wei H, Prabhu L, Lu T.
    Cell Cycle; 2014 Mar 01; 13(18):2847-52. PubMed ID: 25486472
    [Abstract] [Full Text] [Related]

  • 58. Identification of context-dependent motifs by contrasting ChIP binding data.
    Mason MJ, Plath K, Zhou Q.
    Bioinformatics; 2010 Nov 15; 26(22):2826-32. PubMed ID: 20870645
    [Abstract] [Full Text] [Related]

  • 59. MoD Tools: regulatory motif discovery in nucleotide sequences from co-regulated or homologous genes.
    Pavesi G, Mereghetti P, Zambelli F, Stefani M, Mauri G, Pesole G.
    Nucleic Acids Res; 2006 Jul 01; 34(Web Server issue):W566-70. PubMed ID: 16845071
    [Abstract] [Full Text] [Related]

  • 60. BinDNase: a discriminatory approach for transcription factor binding prediction using DNase I hypersensitivity data.
    Kähärä J, Lähdesmäki H.
    Bioinformatics; 2015 Sep 01; 31(17):2852-9. PubMed ID: 25957350
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 8.