These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
202 related items for PubMed ID: 24870563
1. Low-dose radiation from 18F-FDG PET does not increase cancer frequency or shorten latency but reduces kidney disease in cancer-prone Trp53+/- mice. Taylor K, Lemon JA, Phan N, Boreham DR. Mutagenesis; 2014 Jul; 29(4):289-94. PubMed ID: 24870563 [Abstract] [Full Text] [Related]
2. Radiation-induced DNA damage and the relative biological effectiveness of 18F-FDG in wild-type mice. Taylor K, Lemon JA, Boreham DR. Mutagenesis; 2014 Jul; 29(4):279-87. PubMed ID: 24870562 [Abstract] [Full Text] [Related]
3. Cancer and non-cancer risks in normal and cancer-prone Trp53 heterozygous mice exposed to high-dose radiation. Carlisle SM, Burchart PA, Mitchel RE. Radiat Res; 2010 Jan; 173(1):40-8. PubMed ID: 20041758 [Abstract] [Full Text] [Related]
4. Multiple CT Scans Extend Lifespan by Delaying Cancer Progression in Cancer-Prone Mice. Lemon JA, Phan N, Boreham DR. Radiat Res; 2017 Oct; 188(4.2):495-504. PubMed ID: 28741984 [Abstract] [Full Text] [Related]
5. Upper dose thresholds for radiation-induced adaptive response against cancer in high-dose-exposed, cancer-prone, radiation-sensitive Trp53 heterozygous mice. Mitchel RE, Jackson JS, Carlisle SM. Radiat Res; 2004 Jul; 162(1):20-30. PubMed ID: 15222780 [Abstract] [Full Text] [Related]
6. Single CT Scan Prolongs Survival by Extending Cancer Latency in Trp53 Heterozygous Mice. Lemon JA, Phan N, Boreham DR. Radiat Res; 2017 Oct; 188(4.2):505-511. PubMed ID: 28742468 [Abstract] [Full Text] [Related]
7. Low doses of radiation increase the latency of spontaneous lymphomas and spinal osteosarcomas in cancer-prone, radiation-sensitive Trp53 heterozygous mice. Mitchel RE, Jackson JS, Morrison DP, Carlisle SM. Radiat Res; 2003 Mar; 159(3):320-7. PubMed ID: 12600234 [Abstract] [Full Text] [Related]
8. A lower dose threshold for the in vivo protective adaptive response to radiation. Tumorigenesis in chronically exposed normal and Trp53 heterozygous C57BL/6 mice. Mitchel RE, Burchart P, Wyatt H. Radiat Res; 2008 Dec; 170(6):765-75. PubMed ID: 19138040 [Abstract] [Full Text] [Related]
9. Dose and dose rate extrapolation factors for malignant and non-malignant health endpoints after exposure to gamma and neutron radiation. Tran V, Little MP. Radiat Environ Biophys; 2017 Nov; 56(4):299-328. PubMed ID: 28939964 [Abstract] [Full Text] [Related]
10. Fractionated, low-dose-rate ionizing radiation exposure and chronic ulcerative dermatitis in normal and Trp53 heterozygous C57BL/6 mice. Mitchel RE, Burchart P, Wyatt H. Radiat Res; 2007 Dec; 168(6):716-24. PubMed ID: 18088189 [Abstract] [Full Text] [Related]
11. Whole-body tumor imaging using PET and 2-18F-fluoro-L-tyrosine: preliminary evaluation and comparison with 18F-FDG. Hustinx R, Lemaire C, Jerusalem G, Moreau P, Cataldo D, Duysinx B, Aerts J, Fassotte MF, Foidart J, Luxen A. J Nucl Med; 2003 Apr; 44(4):533-9. PubMed ID: 12679396 [Abstract] [Full Text] [Related]
12. Quantifying murine bone marrow and blood radiation dose response following (18)F-FDG PET with DNA damage biomarkers. Manning G, Taylor K, Finnon P, Lemon JA, Boreham DR, Badie C. Mutat Res; 2014 Dec; 770():29-36. PubMed ID: 25771867 [Abstract] [Full Text] [Related]
13. Ionising radiation-free whole-body MRI versus (18)F-fluorodeoxyglucose PET/CT scans for children and young adults with cancer: a prospective, non-randomised, single-centre study. Klenk C, Gawande R, Uslu L, Khurana A, Qiu D, Quon A, Donig J, Rosenberg J, Luna-Fineman S, Moseley M, Daldrup-Link HE. Lancet Oncol; 2014 Mar; 15(3):275-85. PubMed ID: 24559803 [Abstract] [Full Text] [Related]
14. Low-dose radiation exposure and protection against atherosclerosis in ApoE(-/-) mice: the influence of P53 heterozygosity. Mitchel RE, Hasu M, Bugden M, Wyatt H, Hildebrandt G, Chen YX, Priest ND, Whitman SC. Radiat Res; 2013 Feb; 179(2):190-9. PubMed ID: 23289388 [Abstract] [Full Text] [Related]
15. Low-Dose Gamma Radiation Does Not Induce an Adaptive Response for Micronucleus Induction in Mouse Splenocytes. Bannister LA, Serran ML, Mantha RR. Radiat Res; 2015 Nov; 184(5):533-44. PubMed ID: 26495871 [Abstract] [Full Text] [Related]
16. Increased therapeutic ratio by 18FDG-PET CT planning in patients with clinical CT stage N2-N3M0 non-small-cell lung cancer: a modeling study. van Der Wel A, Nijsten S, Hochstenbag M, Lamers R, Boersma L, Wanders R, Lutgens L, Zimny M, Bentzen SM, Wouters B, Lambin P, De Ruysscher D. Int J Radiat Oncol Biol Phys; 2005 Mar 01; 61(3):649-55. PubMed ID: 15708242 [Abstract] [Full Text] [Related]
17. Preclinical dynamic 18F-FDG PET - tumor characterization and radiotherapy response assessment by kinetic compartment analysis. Røe K, Aleksandersen TB, Kristian A, Nilsen LB, Seierstad T, Qu H, Ree AH, Olsen DR, Malinen E. Acta Oncol; 2010 Oct 01; 49(7):914-21. PubMed ID: 20831478 [Abstract] [Full Text] [Related]