These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
813 related items for PubMed ID: 24875958
1. Primary stiffness of a modified transforaminal lumbar interbody fusion cage with integrated screw fixation: cadaveric biomechanical study. Keiler A, Schmoelz W, Erhart S, Gnanalingham K. Spine (Phila Pa 1976); 2014 Aug 01; 39(17):E994-E1000. PubMed ID: 24875958 [Abstract] [Full Text] [Related]
2. Transforaminal lumbar interbody fusion: the effect of various instrumentation techniques on the flexibility of the lumbar spine. Harris BM, Hilibrand AS, Savas PE, Pellegrino A, Vaccaro AR, Siegler S, Albert TJ. Spine (Phila Pa 1976); 2004 Feb 15; 29(4):E65-70. PubMed ID: 15094547 [Abstract] [Full Text] [Related]
3. Biomechanical analysis of an expandable lateral cage and a static transforaminal lumbar interbody fusion cage with posterior instrumentation in an in vitro spondylolisthesis model. Mantell M, Cyriac M, Haines CM, Gudipally M, O'Brien JR. J Neurosurg Spine; 2016 Jan 15; 24(1):32-8. PubMed ID: 26384133 [Abstract] [Full Text] [Related]
4. Biomechanical comparison of single-level posterior versus transforaminal lumbar interbody fusions with bilateral pedicle screw fixation: segmental stability and the effects on adjacent motion segments. Sim HB, Murovic JA, Cho BY, Lim TJ, Park J. J Neurosurg Spine; 2010 Jun 15; 12(6):700-8. PubMed ID: 20515358 [Abstract] [Full Text] [Related]
6. Biomechanical assessment of anterior lumbar interbody fusion with an anterior lumbosacral fixation screw-plate: comparison to stand-alone anterior lumbar interbody fusion and anterior lumbar interbody fusion with pedicle screws in an unstable human cadaver model. Gerber M, Crawford NR, Chamberlain RH, Fifield MS, LeHuec JC, Dickman CA. Spine (Phila Pa 1976); 2006 Apr 01; 31(7):762-8. PubMed ID: 16582849 [Abstract] [Full Text] [Related]
7. In vitro study of biomechanical behavior of anterior and transforaminal lumbar interbody instrumentation techniques. Niemeyer TK, Koriller M, Claes L, Kettler A, Werner K, Wilke HJ. Neurosurgery; 2006 Dec 01; 59(6):1271-6; discussion 1276-7. PubMed ID: 17277690 [Abstract] [Full Text] [Related]
8. MIS Expandable Interbody Spacers: A Literature Review and Biomechanical Comparison of an Expandable MIS TLIF With Conventional TLIF and ALIF. Cannestra AF, Peterson MD, Parker SR, Roush TF, Bundy JV, Turner AW. Spine (Phila Pa 1976); 2016 Apr 01; 41 Suppl 8():S44-9. PubMed ID: 26825792 [Abstract] [Full Text] [Related]
9. Less invasive posterior fixation method following transforaminal lumbar interbody fusion: a biomechanical analysis. Slucky AV, Brodke DS, Bachus KN, Droge JA, Braun JT. Spine J; 2006 Apr 01; 6(1):78-85. PubMed ID: 16413452 [Abstract] [Full Text] [Related]
10. Biomechanics of lateral lumbar interbody fusion constructs with lateral and posterior plate fixation: laboratory investigation. Fogel GR, Parikh RD, Ryu SI, Turner AW. J Neurosurg Spine; 2014 Mar 01; 20(3):291-7. PubMed ID: 24405464 [Abstract] [Full Text] [Related]
11. Properties of an interspinous fixation device (ISD) in lumbar fusion constructs: a biomechanical study. Techy F, Mageswaran P, Colbrunn RW, Bonner TF, McLain RF. Spine J; 2013 May 01; 13(5):572-9. PubMed ID: 23498926 [Abstract] [Full Text] [Related]
13. Biomechanical effect of transforaminal lumbar interbody fusion and axial interbody threaded rod on range of motion and S1 screw loading in a destabilized L5-S1 spondylolisthesis model. Fleischer GD, Hart D, Ferrara LA, Freeman AL, Avidano EE. Spine (Phila Pa 1976); 2014 Jan 15; 39(2):E82-8. PubMed ID: 24150429 [Abstract] [Full Text] [Related]
14. Biomechanical analysis of an interspinous fusion device as a stand-alone and as supplemental fixation to posterior expandable interbody cages in the lumbar spine. Gonzalez-Blohm SA, Doulgeris JJ, Aghayev K, Lee WE, Volkov A, Vrionis FD. J Neurosurg Spine; 2014 Feb 15; 20(2):209-19. PubMed ID: 24286528 [Abstract] [Full Text] [Related]
15. [Biomechanical evaluation of asymmetrical posterior internal fixation for transforaminal lumbar interbody fusion with transfacetopedicular screws]. Ao J, Jin AM, Zhao WD, Zhang H, Min SX, Yu B, Chen WY. Nan Fang Yi Ke Da Xue Xue Bao; 2009 May 15; 29(5):959-61, 965. PubMed ID: 19460720 [Abstract] [Full Text] [Related]
18. Biomechanics of lateral plate and pedicle screw constructs in lumbar spines instrumented at two levels with laterally placed interbody cages. Nayak AN, Gutierrez S, Billys JB, Santoni BG, Castellvi AE. Spine J; 2013 Oct 15; 13(10):1331-8. PubMed ID: 23685215 [Abstract] [Full Text] [Related]
19. Stability of transforaminal lumbar interbody fusion in the setting of retained facets and posterior fixation using transfacet or standard pedicle screws. Chin KR, Reis MT, Reyes PM, Newcomb AG, Neagoe A, Gabriel JP, Sung RD, Crawford NR. Spine J; 2015 May 01; 15(5):1077-82. PubMed ID: 24210638 [Abstract] [Full Text] [Related]
20. Bilateral pedicle screw fixation provides superior biomechanical stability in transforaminal lumbar interbody fusion: a finite element study. Ambati DV, Wright EK, Lehman RA, Kang DG, Wagner SC, Dmitriev AE. Spine J; 2015 Aug 01; 15(8):1812-22. PubMed ID: 24983669 [Abstract] [Full Text] [Related] Page: [Next] [New Search]