These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Structural insights into the cofactor-assisted substrate recognition of yeast quinone oxidoreductase Zta1. Guo PC, Ma XX, Bao ZZ, Ma JD, Chen Y, Zhou CZ. J Struct Biol; 2011 Oct; 176(1):112-8. PubMed ID: 21820057 [Abstract] [Full Text] [Related]
3. Structures of Saccharomyces cerevisiae D-arabinose dehydrogenase Ara1 and its complex with NADPH: implications for cofactor-assisted substrate recognition. Hu XQ, Guo PC, Ma JD, Li WF. Acta Crystallogr Sect F Struct Biol Cryst Commun; 2013 Nov; 69(Pt 11):1190-5. PubMed ID: 24192347 [Abstract] [Full Text] [Related]
4. Engineered NADH-dependent GRE2 from Saccharomyces cerevisiae by directed enzyme evolution enhances HMF reduction using additional cofactor NADPH. Moon J, Liu ZL. Enzyme Microb Technol; 2012 Feb 10; 50(2):115-20. PubMed ID: 22226197 [Abstract] [Full Text] [Related]
5. Crystallographic analysis and structure-guided engineering of NADPH-dependent Ralstonia sp. alcohol dehydrogenase toward NADH cosubstrate specificity. Lerchner A, Jarasch A, Meining W, Schiefner A, Skerra A. Biotechnol Bioeng; 2013 Nov 10; 110(11):2803-14. PubMed ID: 23686719 [Abstract] [Full Text] [Related]
13. Engineering cofactor preference of ketone reducing biocatalysts: A mutagenesis study on a γ-diketone reductase from the yeast Saccharomyces cerevisiae serving as an example. Katzberg M, Skorupa-Parachin N, Gorwa-Grauslund MF, Bertau M. Int J Mol Sci; 2010 Apr 14; 11(4):1735-58. PubMed ID: 20480039 [Abstract] [Full Text] [Related]
14. Crystal structures of shikimate dehydrogenase AroE from Thermus thermophilus HB8 and its cofactor and substrate complexes: insights into the enzymatic mechanism. Bagautdinov B, Kunishima N. J Mol Biol; 2007 Oct 19; 373(2):424-38. PubMed ID: 17825835 [Abstract] [Full Text] [Related]
17. The three-dimensional structures of the Mycobacterium tuberculosis dihydrodipicolinate reductase-NADH-2,6-PDC and -NADPH-2,6-PDC complexes. Structural and mutagenic analysis of relaxed nucleotide specificity. Cirilli M, Zheng R, Scapin G, Blanchard JS. Biochemistry; 2003 Sep 16; 42(36):10644-50. PubMed ID: 12962488 [Abstract] [Full Text] [Related]
18. Asymmetric synthesis of (S)-3-chloro-1-phenyl-1-propanol using Saccharomyces cerevisiae reductase with high enantioselectivity. Choi YH, Choi HJ, Kim D, Uhm KN, Kim HK. Appl Microbiol Biotechnol; 2010 Jun 16; 87(1):185-93. PubMed ID: 20111861 [Abstract] [Full Text] [Related]
19. Co-factor binding confers substrate specificity to xylose reductase from Debaryomyces hansenii. Biswas D, Pandya V, Singh AK, Mondal AK, Kumaran S. PLoS One; 2012 Jun 16; 7(9):e45525. PubMed ID: 23049810 [Abstract] [Full Text] [Related]
20. Crystal structure of l-rhamnose 1-dehydrogenase involved in the nonphosphorylative pathway of l-rhamnose metabolism in bacteria. Yoshiwara K, Watanabe S, Watanabe Y. FEBS Lett; 2021 Mar 16; 595(5):637-646. PubMed ID: 33482017 [Abstract] [Full Text] [Related] Page: [Next] [New Search]