These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


305 related items for PubMed ID: 24882117

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces.
    Miljkovic N, Enright R, Wang EN.
    ACS Nano; 2012 Feb 28; 6(2):1776-85. PubMed ID: 22293016
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Design and Fabrication of a Hybrid Superhydrophobic-Hydrophilic Surface That Exhibits Stable Dropwise Condensation.
    Mondal B, Mac Giolla Eain M, Xu Q, Egan VM, Punch J, Lyons AM.
    ACS Appl Mater Interfaces; 2015 Oct 28; 7(42):23575-88. PubMed ID: 26372672
    [Abstract] [Full Text] [Related]

  • 8. Wetting Transition of Condensed Droplets on Nanostructured Superhydrophobic Surfaces: Coordination of Surface Properties and Condensing Conditions.
    Wen R, Lan Z, Peng B, Xu W, Yang R, Ma X.
    ACS Appl Mater Interfaces; 2017 Apr 19; 9(15):13770-13777. PubMed ID: 28362085
    [Abstract] [Full Text] [Related]

  • 9. A Comprehensive Model of Electric-Field-Enhanced Jumping-Droplet Condensation on Superhydrophobic Surfaces.
    Birbarah P, Li Z, Pauls A, Miljkovic N.
    Langmuir; 2015 Jul 21; 31(28):7885-96. PubMed ID: 26110977
    [Abstract] [Full Text] [Related]

  • 10. Electric-field-enhanced condensation on superhydrophobic nanostructured surfaces.
    Miljkovic N, Preston DJ, Enright R, Wang EN.
    ACS Nano; 2013 Dec 23; 7(12):11043-54. PubMed ID: 24261667
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Enhanced Coalescence-Induced Droplet-Jumping on Nanostructured Superhydrophobic Surfaces in the Absence of Microstructures.
    Zhang P, Maeda Y, Lv F, Takata Y, Orejon D.
    ACS Appl Mater Interfaces; 2017 Oct 11; 9(40):35391-35403. PubMed ID: 28925681
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Dynamics of nanoparticle self-assembly into superhydrophobic liquid marbles during water condensation.
    Rykaczewski K, Chinn J, Walker ML, Scott JH, Chinn A, Jones W.
    ACS Nano; 2011 Dec 27; 5(12):9746-54. PubMed ID: 22035295
    [Abstract] [Full Text] [Related]

  • 15. Hierarchical Condensation.
    Yan X, Chen F, Sett S, Chavan S, Li H, Feng L, Li L, Zhao F, Zhao C, Huang Z, Miljkovic N.
    ACS Nano; 2019 Jul 23; 13(7):8169-8184. PubMed ID: 31265236
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets.
    Mishchenko L, Hatton B, Bahadur V, Taylor JA, Krupenkin T, Aizenberg J.
    ACS Nano; 2010 Dec 28; 4(12):7699-707. PubMed ID: 21062048
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Heat Transfer through a Condensate Droplet on Hydrophobic and Nanostructured Superhydrophobic Surfaces.
    Chavan S, Cha H, Orejon D, Nawaz K, Singla N, Yeung YF, Park D, Kang DH, Chang Y, Takata Y, Miljkovic N.
    Langmuir; 2016 Aug 09; 32(31):7774-87. PubMed ID: 27409353
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.