These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


236 related items for PubMed ID: 24902750

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Why do insects enter and recover from chill coma? Low temperature and high extracellular potassium compromise muscle function in Locusta migratoria.
    Findsen A, Pedersen TH, Petersen AG, Nielsen OB, Overgaard J.
    J Exp Biol; 2014 Apr 15; 217(Pt 8):1297-306. PubMed ID: 24744424
    [Abstract] [Full Text] [Related]

  • 3. Feeding impairs chill coma recovery in the migratory locust (Locusta migratoria).
    Andersen JL, Findsen A, Overgaard J.
    J Insect Physiol; 2013 Oct 15; 59(10):1041-8. PubMed ID: 23932963
    [Abstract] [Full Text] [Related]

  • 4. Muscle membrane potential and insect chill coma.
    Andersen JL, MacMillan HA, Overgaard J.
    J Exp Biol; 2015 Aug 15; 218(Pt 16):2492-5. PubMed ID: 26089529
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Rapid cold hardening improves recovery of ion homeostasis and chill coma recovery time in the migratory locust, Locusta migratoria.
    Findsen A, Andersen JL, Calderon S, Overgaard J.
    J Exp Biol; 2013 May 01; 216(Pt 9):1630-7. PubMed ID: 23348947
    [Abstract] [Full Text] [Related]

  • 8. Concurrent effects of cold and hyperkalaemia cause insect chilling injury.
    MacMillan HA, Baatrup E, Overgaard J.
    Proc Biol Sci; 2015 Oct 22; 282(1817):20151483. PubMed ID: 26468241
    [Abstract] [Full Text] [Related]

  • 9. Physiological correlates of chill susceptibility in Lepidoptera.
    Andersen MK, Jensen SO, Overgaard J.
    J Insect Physiol; 2017 Apr 22; 98():317-326. PubMed ID: 28188725
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Reduced L-type Ca2+ current and compromised excitability induce loss of skeletal muscle function during acute cooling in locust.
    Findsen A, Overgaard J, Pedersen TH.
    J Exp Biol; 2016 Aug 01; 219(Pt 15):2340-8. PubMed ID: 27247315
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Cold exposure causes cell death by depolarization-mediated Ca2+ overload in a chill-susceptible insect.
    Bayley JS, Winther CB, Andersen MK, Grønkjær C, Nielsen OB, Pedersen TH, Overgaard J.
    Proc Natl Acad Sci U S A; 2018 Oct 09; 115(41):E9737-E9744. PubMed ID: 30254178
    [Abstract] [Full Text] [Related]

  • 19. Loss of ion homeostasis is not the cause of chill coma or impaired dispersal in false codling moth Thaumatotibia leucotreta (Lepidoptera: Tortricidae).
    Karsten M, Lebenzon JE, Sinclair BJ, Terblanche JS.
    Comp Biochem Physiol A Mol Integr Physiol; 2019 Mar 09; 229():40-44. PubMed ID: 30502471
    [Abstract] [Full Text] [Related]

  • 20. Mechanisms underlying insect chill-coma.
    Macmillan HA, Sinclair BJ.
    J Insect Physiol; 2011 Jan 09; 57(1):12-20. PubMed ID: 20969872
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.