These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


379 related items for PubMed ID: 24907567

  • 1. Multi-Gaussian-DAEM-reaction model for thermal decompositions of cellulose, hemicellulose and lignin: comparison of N₂ and CO₂ atmosphere.
    Zhang J, Chen T, Wu J, Wu J.
    Bioresour Technol; 2014 Aug; 166():87-95. PubMed ID: 24907567
    [Abstract] [Full Text] [Related]

  • 2. Kinetic and energy production analysis of pyrolysis of lignocellulosic biomass using a three-parallel Gaussian reaction model.
    Chen T, Zhang J, Wu J.
    Bioresour Technol; 2016 Jul; 211():502-8. PubMed ID: 27035484
    [Abstract] [Full Text] [Related]

  • 3. Thermal degradation mechanisms of wood under inert and oxidative environments using DAEM methods.
    Shen DK, Gu S, Jin B, Fang MX.
    Bioresour Technol; 2011 Jan; 102(2):2047-52. PubMed ID: 20951030
    [Abstract] [Full Text] [Related]

  • 4. TG-MS analysis and kinetic study for thermal decomposition of six representative components of municipal solid waste under steam atmosphere.
    Zhang J, Chen T, Wu J, Wu J.
    Waste Manag; 2015 Sep; 43():152-61. PubMed ID: 26066574
    [Abstract] [Full Text] [Related]

  • 5. Gasification kinetic analysis of the three pseudocomponents of biomass-cellulose, semicellulose and lignin.
    Chen T, Wu J, Zhang J, Wu J, Sun L.
    Bioresour Technol; 2014 Feb; 153():223-9. PubMed ID: 24365743
    [Abstract] [Full Text] [Related]

  • 6. Synergistic effect on thermal behavior during co-pyrolysis of lignocellulosic biomass model components blend with bituminous coal.
    Wu Z, Wang S, Zhao J, Chen L, Meng H.
    Bioresour Technol; 2014 Oct; 169():220-228. PubMed ID: 25058297
    [Abstract] [Full Text] [Related]

  • 7. Characteristics and kinetic study on pyrolysis of five lignocellulosic biomass via thermogravimetric analysis.
    Chen Z, Hu M, Zhu X, Guo D, Liu S, Hu Z, Xiao B, Wang J, Laghari M.
    Bioresour Technol; 2015 Sep; 192():441-50. PubMed ID: 26080101
    [Abstract] [Full Text] [Related]

  • 8. Non-isothermal pyrolysis characteristics of giant sensitive plants using thermogravimetric analysis.
    Wongsiriamnuay T, Tippayawong N.
    Bioresour Technol; 2010 Jul; 101(14):5638-44. PubMed ID: 20189804
    [Abstract] [Full Text] [Related]

  • 9. Thermogravimetric-mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis.
    Sanchez-Silva L, López-González D, Villaseñor J, Sánchez P, Valverde JL.
    Bioresour Technol; 2012 Apr; 109():163-72. PubMed ID: 22297048
    [Abstract] [Full Text] [Related]

  • 10. Sensitivity analysis of three-parallel-DAEM-reaction model for describing rice straw pyrolysis.
    Cai J, Wu W, Liu R.
    Bioresour Technol; 2013 Mar; 132():423-6. PubMed ID: 23280091
    [Abstract] [Full Text] [Related]

  • 11. Effect of biopretreatment on thermogravimetric and chemical characteristics of corn stover by different white-rot fungi.
    Yang X, Zeng Y, Ma F, Zhang X, Yu H.
    Bioresour Technol; 2010 Jul; 101(14):5475-9. PubMed ID: 20207135
    [Abstract] [Full Text] [Related]

  • 12. Online evolved gas analysis by Thermogravimetric-Mass Spectroscopy for thermal decomposition of biomass and its components under different atmospheres: part I. Lignin.
    Shen D, Hu J, Xiao R, Zhang H, Li S, Gu S.
    Bioresour Technol; 2013 Feb; 130():449-56. PubMed ID: 23313692
    [Abstract] [Full Text] [Related]

  • 13. Pyrolysis and gasification of typical components in wastes with macro-TGA.
    Meng A, Chen S, Long Y, Zhou H, Zhang Y, Li Q.
    Waste Manag; 2015 Dec; 46():247-56. PubMed ID: 26318422
    [Abstract] [Full Text] [Related]

  • 14. Use of autocatalytic kinetics to obtain composition of lignocellulosic materials.
    Barneto AG, Carmona JA, Alfonso JE, Alcaide LJ.
    Bioresour Technol; 2009 Sep; 100(17):3963-73. PubMed ID: 19369063
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Pyrolysis characteristics and kinetics of Arundo donax using thermogravimetric analysis.
    Jeguirim M, Trouvé G.
    Bioresour Technol; 2009 Sep; 100(17):4026-31. PubMed ID: 19362825
    [Abstract] [Full Text] [Related]

  • 18. Thermogravimetric and kinetic analysis of Spirulina wastes under nitrogen and air atmospheres.
    Li L, Zhao N, Fu X, Shao M, Qin S.
    Bioresour Technol; 2013 Jul; 140():152-7. PubMed ID: 23693145
    [Abstract] [Full Text] [Related]

  • 19. Effects of cellulose, hemicellulose and lignin on thermochemical conversion characteristics of the selected biomass.
    Pasangulapati V, Ramachandriya KD, Kumar A, Wilkins MR, Jones CL, Huhnke RL.
    Bioresour Technol; 2012 Jun; 114():663-9. PubMed ID: 22520219
    [Abstract] [Full Text] [Related]

  • 20. NOx and N2O precursors from biomass pyrolysis: role of cellulose, hemicellulose and lignin.
    Ren Q, Zhao C.
    Environ Sci Technol; 2013 Aug 06; 47(15):8955-61. PubMed ID: 23848228
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.