These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
115 related items for PubMed ID: 24907740
1. Comparative study of thermal stability of magnetostrictive biosensor between two kinds of biorecognition elements. Ye XM, Guntupalli R, Lakshmanan RS, Chin BA, Hu J. Mater Sci Eng C Mater Biol Appl; 2014 Aug 01; 41():78-82. PubMed ID: 24907740 [Abstract] [Full Text] [Related]
2. A magnetoelastic resonance biosensor immobilized with polyclonal antibody for the detection of Salmonella typhimurium. Guntupalli R, Hu J, Lakshmanan RS, Huang TS, Barbaree JM, Chin BA. Biosens Bioelectron; 2007 Feb 15; 22(7):1474-9. PubMed ID: 16930986 [Abstract] [Full Text] [Related]
3. Phage immobilized magnetoelastic sensor for the detection of Salmonella typhimurium. Lakshmanan RS, Guntupalli R, Hu J, Kim DJ, Petrenko VA, Barbaree JM, Chin BA. J Microbiol Methods; 2007 Oct 15; 71(1):55-60. PubMed ID: 17765344 [Abstract] [Full Text] [Related]
4. Magnetostrictive particle based biosensors for in situ and real-time detection of pathogens in water. Zhang K, Fu L, Zhang L, Cheng ZY, Huang TS. Biotechnol Bioeng; 2014 Nov 15; 111(11):2229-38. PubMed ID: 24890794 [Abstract] [Full Text] [Related]
5. Direct detection of Salmonella typhimurium on fresh produce using phage-based magnetoelastic biosensors. Li S, Li Y, Chen H, Horikawa S, Shen W, Simonian A, Chin BA. Biosens Bioelectron; 2010 Dec 15; 26(4):1313-9. PubMed ID: 20688505 [Abstract] [Full Text] [Related]
6. Novel Approach of a Phage-Based Magnetoelastic Biosensor for the Detection of Salmonella enterica serovar Typhimurium in Soil. Park MK, Chin BA. J Microbiol Biotechnol; 2016 Dec 28; 26(12):2051-2059. PubMed ID: 27728960 [Abstract] [Full Text] [Related]
7. Sequential detection of Salmonella typhimurium and Bacillus anthracis spores using magnetoelastic biosensors. Huang S, Yang H, Lakshmanan RS, Johnson ML, Wan J, Chen IH, Wikle HC, Petrenko VA, Barbaree JM, Chin BA. Biosens Bioelectron; 2009 Feb 15; 24(6):1730-6. PubMed ID: 18954970 [Abstract] [Full Text] [Related]
8. Affinity-selected filamentous bacteriophage as a probe for acoustic wave biodetectors of Salmonella typhimurium. Olsen EV, Sorokulova IB, Petrenko VA, Chen IH, Barbaree JM, Vodyanoy VJ. Biosens Bioelectron; 2006 Feb 15; 21(8):1434-42. PubMed ID: 16085408 [Abstract] [Full Text] [Related]
9. Rapid and sensitive detection of Salmonella Typhimurium on eggshells by using wireless biosensors. Chai Y, Li S, Horikawa S, Park MK, Vodyanoy V, Chin BA. J Food Prot; 2012 Apr 15; 75(4):631-6. PubMed ID: 22488049 [Abstract] [Full Text] [Related]
10. A novel FRET-based optical fiber biosensor for rapid detection of Salmonella typhimurium. Ko S, Grant SA. Biosens Bioelectron; 2006 Jan 15; 21(7):1283-90. PubMed ID: 16040238 [Abstract] [Full Text] [Related]
11. Rapid and sensitive magnetoelastic biosensors for the detection of Salmonella typhimurium in a mixed microbial population. Guntupalli R, Lakshmanan RS, Hu J, Huang TS, Barbaree JM, Vodyanoy V, Chin BA. J Microbiol Methods; 2007 Jul 15; 70(1):112-8. PubMed ID: 17490768 [Abstract] [Full Text] [Related]
12. Detection of Salmonella Typhimurium on Spinach Using Phage-Based Magnetoelastic Biosensors. Wang F, Horikawa S, Hu J, Wikle HC, Chen IH, Du S, Liu Y, Chin BA. Sensors (Basel); 2017 Feb 16; 17(2):. PubMed ID: 28212322 [Abstract] [Full Text] [Related]
13. The effect of salt and phage concentrations on the binding sensitivity of magnetoelastic biosensors for Bacillus anthracis detection. Huang S, Yang H, Lakshmanan RS, Johnson ML, Chen I, Wan J, Wikle HC, Petrenko VA, Barbaree JM, Cheng ZY, Chin BA. Biotechnol Bioeng; 2008 Dec 01; 101(5):1014-21. PubMed ID: 18563848 [Abstract] [Full Text] [Related]
14. Effects of surface functionalization on the surface phage coverage and the subsequent performance of phage-immobilized magnetoelastic biosensors. Horikawa S, Bedi D, Li S, Shen W, Huang S, Chen IH, Chai Y, Auad ML, Bozack MJ, Barbaree JM, Petrenko VA, Chin BA. Biosens Bioelectron; 2011 Jan 15; 26(5):2361-7. PubMed ID: 21084182 [Abstract] [Full Text] [Related]
15. Development of a rapid response biosensor for detection of Salmonella typhimurium. Seo KH, Brackett RE, Hartman NF, Campbell DP. J Food Prot; 1999 May 15; 62(5):431-7. PubMed ID: 10340660 [Abstract] [Full Text] [Related]
17. Highly sensitive phage-based biosensor for the detection of beta-galactosidase. Nanduri V, Balasubramanian S, Sista S, Vodyanoy VJ, Simonian AL. Anal Chim Acta; 2007 Apr 25; 589(2):166-72. PubMed ID: 17418177 [Abstract] [Full Text] [Related]
18. Development of a piezoelectric immunosensor for the detection of Salmonella typhimurium. Prusak-Sochaczewski E, Luong JH, Guilbault GG. Enzyme Microb Technol; 1990 Mar 25; 12(3):173-7. PubMed ID: 1366514 [Abstract] [Full Text] [Related]
19. Performance of wild, tailed, humidity-robust phage on a surface-scanning magnetoelastic biosensor for Salmonella Typhimurium detection. Lee HE, Jeon YB, Chin BA, Lee SH, Lee HJ, Park MK. Food Chem; 2023 May 30; 409():135239. PubMed ID: 36584528 [Abstract] [Full Text] [Related]
20. Real-time and sensitive detection of Salmonella Typhimurium using an automated quartz crystal microbalance (QCM) instrument with nanoparticles amplification. Salam F, Uludag Y, Tothill IE. Talanta; 2013 Oct 15; 115():761-7. PubMed ID: 24054660 [Abstract] [Full Text] [Related] Page: [Next] [New Search]