These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Incorporation of carboxylation multiwalled carbon nanotubes into biodegradable poly(lactic-co-glycolic acid) for bone tissue engineering. Lin C, Wang Y, Lai Y, Yang W, Jiao F, Zhang H, Ye S, Zhang Q. Colloids Surf B Biointerfaces; 2011 Apr 01; 83(2):367-75. PubMed ID: 21208787 [Abstract] [Full Text] [Related]
3. Biofabrication of a PLGA-TCP-based porous bioactive bone substitute with sustained release of icaritin. Xie XH, Wang XL, Zhang G, He YX, Leng Y, Tang TT, Pan X, Qin L. J Tissue Eng Regen Med; 2015 Aug 01; 9(8):961-72. PubMed ID: 23255530 [Abstract] [Full Text] [Related]
5. Comparison of morphology and mechanical properties of PLGA bioscaffolds. Leung L, Chan C, Baek S, Naguib H. Biomed Mater; 2008 Jun 01; 3(2):025006. PubMed ID: 18458364 [Abstract] [Full Text] [Related]
6. Carbon nanotube-poly(lactide-co-glycolide) composite scaffolds for bone tissue engineering applications. Cheng Q, Rutledge K, Jabbarzadeh E. Ann Biomed Eng; 2013 May 01; 41(5):904-16. PubMed ID: 23283475 [Abstract] [Full Text] [Related]
7. Functionalized carbon nanotube reinforced scaffolds for bone regenerative engineering: fabrication, in vitro and in vivo evaluation. Mikael PE, Amini AR, Basu J, Josefina Arellano-Jimenez M, Laurencin CT, Sanders MM, Barry Carter C, Nukavarapu SP. Biomed Mater; 2014 Jun 01; 9(3):035001. PubMed ID: 24687391 [Abstract] [Full Text] [Related]
11. Solvent effects on the microstructure and properties of 75/25 poly(D,L-lactide-co-glycolide) tissue scaffolds. Sander EA, Alb AM, Nauman EA, Reed WF, Dee KC. J Biomed Mater Res A; 2004 Sep 01; 70(3):506-13. PubMed ID: 15293325 [Abstract] [Full Text] [Related]
12. In vivo mineralization and osteogenesis of nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with poly(L-lactide). Zhang P, Hong Z, Yu T, Chen X, Jing X. Biomaterials; 2009 Jan 01; 30(1):58-70. PubMed ID: 18838160 [Abstract] [Full Text] [Related]
13. Development and characterization of a porous micro-patterned scaffold for vascular tissue engineering applications. Sarkar S, Lee GY, Wong JY, Desai TA. Biomaterials; 2006 Sep 01; 27(27):4775-82. PubMed ID: 16725195 [Abstract] [Full Text] [Related]
18. In vitro osteogenic differentiation of human amniotic fluid-derived stem cells on a poly(lactide-co-glycolide) (PLGA)-bladder submucosa matrix (BSM) composite scaffold for bone tissue engineering. Kim J, Jeong SY, Ju YM, Yoo JJ, Smith TL, Khang G, Lee SJ, Atala A. Biomed Mater; 2013 Feb 01; 8(1):014107. PubMed ID: 23353783 [Abstract] [Full Text] [Related]
19. Fabrication of well-defined PLGA scaffolds using novel microembossing and carbon dioxide bonding. Yang Y, Basu S, Tomasko DL, Lee LJ, Yang ST. Biomaterials; 2005 May 01; 26(15):2585-94. PubMed ID: 15585261 [Abstract] [Full Text] [Related]