These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


215 related items for PubMed ID: 24924739

  • 21. Temporal retinal sensitivity in mesopic adaptation.
    Matesanz BM, Issolio L, Arranz I, de la Rosa C, Menéndez JA, Mar S, Aparicio JA.
    Ophthalmic Physiol Opt; 2011 Nov; 31(6):615-24. PubMed ID: 21752041
    [Abstract] [Full Text] [Related]

  • 22. THE RAT ELECTRORETINOGRAM. I. CONTRASTING EFFECTS OF ADAPTATION ON THE AMPLITUDE AND LATENCY OF THE B-WAVE.
    CONE RA.
    J Gen Physiol; 1964 Jul; 47(6):1089-105. PubMed ID: 14192547
    [Abstract] [Full Text] [Related]

  • 23. On the oscillatory potentials of the human electroretinogram in light and dark adaptation.
    Wachtmeister L.
    Acta Ophthalmol Suppl; 1972 Jul; 116():1-32. PubMed ID: 4348676
    [No Abstract] [Full Text] [Related]

  • 24. Absolute and relative sensitivity of the scotopic system of rat: electroretinography and behavior.
    Naarendorp F, Sato Y, Cajdric A, Hubbard NP.
    Vis Neurosci; 2001 Jul; 18(4):641-56. PubMed ID: 11829310
    [Abstract] [Full Text] [Related]

  • 25. Dark adaptation of human rod bipolar cells measured from the b-wave of the scotopic electroretinogram.
    Cameron AM, Mahroo OA, Lamb TD.
    J Physiol; 2006 Sep 01; 575(Pt 2):507-26. PubMed ID: 16777945
    [Abstract] [Full Text] [Related]

  • 26. Layer-Specific Manganese-Enhanced MRI of the Diabetic Rat Retina in Light and Dark Adaptation at 11.7 Tesla.
    Muir ER, Chandra SB, De La Garza BH, Velagapudi C, Abboud HE, Duong TQ.
    Invest Ophthalmol Vis Sci; 2015 Jun 01; 56(6):4006-12. PubMed ID: 26098468
    [Abstract] [Full Text] [Related]

  • 27. Amplitude increase of the multifocal electroretinogram during light adaptation.
    Kondo M, Miyake Y, Piao CH, Tanikawa A, Horiguchi M, Terasaki H.
    Invest Ophthalmol Vis Sci; 1999 Oct 01; 40(11):2633-7. PubMed ID: 10509660
    [Abstract] [Full Text] [Related]

  • 28. The influence of adaptation on the oscillatory potentials of the human electroretinogram.
    Li XX, Yuan N, Hong J, Song P.
    Doc Ophthalmol; 1991 Oct 01; 76(4):389-94. PubMed ID: 1935546
    [Abstract] [Full Text] [Related]

  • 29. Contribution of voltage-gated sodium channels to b- and d-waves of frog electroretinogram under different conditions of light adaptation.
    Popova E, Kupenova P.
    Vision Res; 2010 Jan 01; 50(1):88-98. PubMed ID: 19854212
    [Abstract] [Full Text] [Related]

  • 30. Relationships between the electroretinogram a-wave, b-wave and oscillatory potentials and their application to clinical diagnosis.
    Asi H, Perlman I.
    Doc Ophthalmol; 1992 Jan 01; 79(2):125-39. PubMed ID: 1591967
    [Abstract] [Full Text] [Related]

  • 31. The postnatal development of the oscillatory potentials of the electroretinogram V. Relation to the double peaked a-wave.
    el Azazi M, Wachtmeister L.
    Acta Ophthalmol (Copenh); 1993 Feb 01; 71(1):32-8. PubMed ID: 8475710
    [Abstract] [Full Text] [Related]

  • 32. On the oscillatory potentials of the human electroretinogram in light and dark adaptation. II. Effect of adaptation to background light and subsequent recovery in the dark. A Fourier analysis.
    Algvere P, Wachtmeister L.
    Acta Ophthalmol (Copenh); 1972 Feb 01; 50(6):837-62. PubMed ID: 4678873
    [No Abstract] [Full Text] [Related]

  • 33. Light-adaptation attenuates the effects of phosphodiesterase blackade by Zaprinast in the isolated rat retina.
    Barabás P, Antal K, Kardos J.
    Neurosci Lett; 2004 Mar 11; 357(3):195-8. PubMed ID: 15003283
    [Abstract] [Full Text] [Related]

  • 34. [Effects of fluorescein and indocyanine green angiography on subsequent dark adaptation and the electroretinogram].
    Bartz-Schmidt KU, Walter P, Krott R, Brunner R, Esser P, Heimann K.
    Klin Monbl Augenheilkd; 1996 Apr 11; 208(4):224-8. PubMed ID: 8778491
    [Abstract] [Full Text] [Related]

  • 35. The influence of adaptation on DC-component of human electroretinogram.
    Li XX, Foerster MH.
    Chin Med J (Engl); 1989 Oct 11; 102(10):800-5. PubMed ID: 2517061
    [Abstract] [Full Text] [Related]

  • 36. Human scotopic dark adaptation: Comparison of recoveries of psychophysical threshold and ERG b-wave sensitivity.
    Ruseckaite R, Lamb TD, Pianta MJ, Cameron AM.
    J Vis; 2011 Jul 06; 11(8):. PubMed ID: 21733908
    [Abstract] [Full Text] [Related]

  • 37. Changes in electroretinogram oscillatory potentials during dark adaptation.
    Kuze M, Uji Y.
    Jpn J Ophthalmol; 2005 Jul 06; 49(5):420-2. PubMed ID: 16187046
    [Abstract] [Full Text] [Related]

  • 38. The Shift of ERG B-Wave Induced by Hours' Dark Exposure in Rodents.
    Li D, Fang Q, Yu H.
    PLoS One; 2016 Jul 06; 11(8):e0161010. PubMed ID: 27517462
    [Abstract] [Full Text] [Related]

  • 39. On the oscillatory potentials of the human electroretinogram in light and dark adaptation. I. Thresholds and relation to stimulus intensity on adaptation to short flashes of light. A Fourier analysis.
    Algvere P, Wachtmeister L, Westbeck S.
    Acta Ophthalmol (Copenh); 1972 Jul 06; 50(5):735-59. PubMed ID: 4678547
    [No Abstract] [Full Text] [Related]

  • 40. Optimisation of dark adaptation time required for mesopic microperimetry.
    Han RC, Gray JM, Han J, Maclaren RE, Jolly JK.
    Br J Ophthalmol; 2019 Aug 06; 103(8):1092-1098. PubMed ID: 30269100
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 11.