These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
630 related items for PubMed ID: 24925269
1. The membrane proteome of Medicago truncatula roots displays qualitative and quantitative changes in response to arbuscular mycorrhizal symbiosis. Abdallah C, Valot B, Guillier C, Mounier A, Balliau T, Zivy M, van Tuinen D, Renaut J, Wipf D, Dumas-Gaudot E, Recorbet G. J Proteomics; 2014 Aug 28; 108():354-68. PubMed ID: 24925269 [Abstract] [Full Text] [Related]
2. The plasma membrane proteome of Medicago truncatula roots as modified by arbuscular mycorrhizal symbiosis. Aloui A, Recorbet G, Lemaître-Guillier C, Mounier A, Balliau T, Zivy M, Wipf D, Dumas-Gaudot E. Mycorrhiza; 2018 Jan 28; 28(1):1-16. PubMed ID: 28725961 [Abstract] [Full Text] [Related]
3. Arbuscular mycorrhizal symbiosis elicits shoot proteome changes that are modified during cadmium stress alleviation in Medicago truncatula. Aloui A, Recorbet G, Robert F, Schoefs B, Bertrand M, Henry C, Gianinazzi-Pearson V, Dumas-Gaudot E, Aschi-Smiti S. BMC Plant Biol; 2011 May 05; 11():75. PubMed ID: 21545723 [Abstract] [Full Text] [Related]
4. Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis. Gomez SK, Javot H, Deewatthanawong P, Torres-Jerez I, Tang Y, Blancaflor EB, Udvardi MK, Harrison MJ. BMC Plant Biol; 2009 Jan 22; 9():10. PubMed ID: 19161626 [Abstract] [Full Text] [Related]
5. Medicago truncatula mtpt4 mutants reveal a role for nitrogen in the regulation of arbuscule degeneration in arbuscular mycorrhizal symbiosis. Javot H, Penmetsa RV, Breuillin F, Bhattarai KK, Noar RD, Gomez SK, Zhang Q, Cook DR, Harrison MJ. Plant J; 2011 Dec 22; 68(6):954-65. PubMed ID: 21848683 [Abstract] [Full Text] [Related]
6. DELLA proteins regulate arbuscule formation in arbuscular mycorrhizal symbiosis. Floss DS, Levy JG, Lévesque-Tremblay V, Pumplin N, Harrison MJ. Proc Natl Acad Sci U S A; 2013 Dec 17; 110(51):E5025-34. PubMed ID: 24297892 [Abstract] [Full Text] [Related]
7. A Medicago truncatula SWEET transporter implicated in arbuscule maintenance during arbuscular mycorrhizal symbiosis. An J, Zeng T, Ji C, de Graaf S, Zheng Z, Xiao TT, Deng X, Xiao S, Bisseling T, Limpens E, Pan Z. New Phytol; 2019 Oct 17; 224(1):396-408. PubMed ID: 31148173 [Abstract] [Full Text] [Related]
8. Laser microdissection unravels cell-type-specific transcription in arbuscular mycorrhizal roots, including CAAT-box transcription factor gene expression correlating with fungal contact and spread. Hogekamp C, Arndt D, Pereira PA, Becker JD, Hohnjec N, Küster H. Plant Physiol; 2011 Dec 17; 157(4):2023-43. PubMed ID: 22034628 [Abstract] [Full Text] [Related]
9. On the mechanisms of cadmium stress alleviation in Medicago truncatula by arbuscular mycorrhizal symbiosis: a root proteomic study. Aloui A, Recorbet G, Gollotte A, Robert F, Valot B, Gianinazzi-Pearson V, Aschi-Smiti S, Dumas-Gaudot E. Proteomics; 2009 Jan 17; 9(2):420-33. PubMed ID: 19072729 [Abstract] [Full Text] [Related]
10. RiPEIP1, a gene from the arbuscular mycorrhizal fungus Rhizophagus irregularis, is preferentially expressed in planta and may be involved in root colonization. Fiorilli V, Belmondo S, Khouja HR, Abbà S, Faccio A, Daghino S, Lanfranco L. Mycorrhiza; 2016 Aug 17; 26(6):609-21. PubMed ID: 27075897 [Abstract] [Full Text] [Related]
11. Cell type-specific protein and transcription profiles implicate periarbuscular membrane synthesis as an important carbon sink in the mycorrhizal symbiosis. Gaude N, Schulze WX, Franken P, Krajinski F. Plant Signal Behav; 2012 Apr 17; 7(4):461-4. PubMed ID: 22499167 [Abstract] [Full Text] [Related]
12. Arbuscular mycorrhizal symbiosis can mitigate the negative effects of night warming on physiological traits of Medicago truncatula L. Hu Y, Wu S, Sun Y, Li T, Zhang X, Chen C, Lin G, Chen B. Mycorrhiza; 2015 Feb 17; 25(2):131-42. PubMed ID: 25033924 [Abstract] [Full Text] [Related]
13. Expression pattern suggests a role of MiR399 in the regulation of the cellular response to local Pi increase during arbuscular mycorrhizal symbiosis. Branscheid A, Sieh D, Pant BD, May P, Devers EA, Elkrog A, Schauser L, Scheible WR, Krajinski F. Mol Plant Microbe Interact; 2010 Jul 17; 23(7):915-26. PubMed ID: 20521954 [Abstract] [Full Text] [Related]
14. A set of fluorescent protein-based markers expressed from constitutive and arbuscular mycorrhiza-inducible promoters to label organelles, membranes and cytoskeletal elements in Medicago truncatula. Ivanov S, Harrison MJ. Plant J; 2014 Dec 17; 80(6):1151-63. PubMed ID: 25329881 [Abstract] [Full Text] [Related]
15. Correlative evidence for co-regulation of phosphorus and carbon exchanges with symbiotic fungus in the arbuscular mycorrhizal Medicago truncatula. Konečný J, Hršelová H, Bukovská P, Hujslová M, Jansa J. PLoS One; 2019 Dec 17; 14(11):e0224938. PubMed ID: 31710651 [Abstract] [Full Text] [Related]
16. A mass spectrometric approach to identify arbuscular mycorrhiza-related proteins in root plasma membrane fractions. Valot B, Negroni L, Zivy M, Gianinazzi S, Dumas-Gaudot E. Proteomics; 2006 Apr 17; 6 Suppl 1():S145-55. PubMed ID: 16511816 [Abstract] [Full Text] [Related]
17. Live-cell imaging reveals periarbuscular membrane domains and organelle location in Medicago truncatula roots during arbuscular mycorrhizal symbiosis. Pumplin N, Harrison MJ. Plant Physiol; 2009 Oct 17; 151(2):809-19. PubMed ID: 19692536 [Abstract] [Full Text] [Related]
18. Changes in plastid proteome and structure in arbuscular mycorrhizal roots display a nutrient starvation signature. Daher Z, Recorbet G, Solymosi K, Wienkoop S, Mounier A, Morandi D, Lherminier J, Wipf D, Dumas-Gaudot E, Schoefs B. Physiol Plant; 2017 Jan 17; 159(1):13-29. PubMed ID: 27558913 [Abstract] [Full Text] [Related]
19. Identification of in planta-expressed arbuscular mycorrhizal fungal proteins upon comparison of the root proteomes of Medicago truncatula colonised with two Glomus species. Recorbet G, Valot B, Robert F, Gianinazzi-Pearson V, Dumas-Gaudot E. Fungal Genet Biol; 2010 Jul 17; 47(7):608-18. PubMed ID: 20226871 [Abstract] [Full Text] [Related]
20. A snapshot of the transcriptome of Medicago truncatula (Fabales: Fabaceae) shoots and roots in response to an arbuscular mycorrhizal fungus and the pea aphid (Acyrthosiphon pisum) (Hemiptera: Aphididae). Gomez SK, Maurya AK, Irvin L, Kelly MP, Schoenherr AP, Huguet-Tapia JC, Bombarely A. Environ Entomol; 2023 Aug 18; 52(4):667-680. PubMed ID: 37467039 [Abstract] [Full Text] [Related] Page: [Next] [New Search]