These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


306 related items for PubMed ID: 24930014

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Tomato Sl3-MMP, a member of the Matrix metalloproteinase family, is required for disease resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000.
    Li D, Zhang H, Song Q, Wang L, Liu S, Hong Y, Huang L, Song F.
    BMC Plant Biol; 2015 Jun 14; 15():143. PubMed ID: 26070456
    [Abstract] [Full Text] [Related]

  • 3. Tomato histone H2B monoubiquitination enzymes SlHUB1 and SlHUB2 contribute to disease resistance against Botrytis cinerea through modulating the balance between SA- and JA/ET-mediated signaling pathways.
    Zhang Y, Li D, Zhang H, Hong Y, Huang L, Liu S, Li X, Ouyang Z, Song F.
    BMC Plant Biol; 2015 Oct 21; 15():252. PubMed ID: 26490733
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Role of dioxygenase α-DOX2 and SA in basal response and in hexanoic acid-induced resistance of tomato (Solanum lycopersicum) plants against Botrytis cinerea.
    Angulo C, de la O Leyva M, Finiti I, López-Cruz J, Fernández-Crespo E, García-Agustín P, González-Bosch C.
    J Plant Physiol; 2015 Mar 01; 175():163-73. PubMed ID: 25543862
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Suppression of the homeobox gene HDTF1 enhances resistance to Verticillium dahliae and Botrytis cinerea in cotton.
    Gao W, Long L, Xu L, Lindsey K, Zhang X, Zhu L.
    J Integr Plant Biol; 2016 May 01; 58(5):503-13. PubMed ID: 26407676
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. SlERF2 Is Associated with Methyl Jasmonate-Mediated Defense Response against Botrytis cinerea in Tomato Fruit.
    Yu W, Zhao R, Sheng J, Shen L.
    J Agric Food Chem; 2018 Sep 26; 66(38):9923-9932. PubMed ID: 30192535
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Inhibition of SlMPK1, SlMPK2, and SlMPK3 Disrupts Defense Signaling Pathways and Enhances Tomato Fruit Susceptibility to Botrytis cinerea.
    Zheng Y, Yang Y, Liu C, Chen L, Sheng J, Shen L.
    J Agric Food Chem; 2015 Jun 10; 63(22):5509-17. PubMed ID: 25910076
    [Abstract] [Full Text] [Related]

  • 17. Hexanoic acid protects tomato plants against Botrytis cinerea by priming defence responses and reducing oxidative stress.
    Finiti I, de la O Leyva M, Vicedo B, Gómez-Pastor R, López-Cruz J, García-Agustín P, Real MD, González-Bosch C.
    Mol Plant Pathol; 2014 Aug 10; 15(6):550-62. PubMed ID: 24320938
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. CRISPR/Cas9-Mediated SlMYC2 Mutagenesis Adverse to Tomato Plant Growth and MeJA-Induced Fruit Resistance to Botrytis cinerea.
    Shu P, Li Z, Min D, Zhang X, Ai W, Li J, Zhou J, Li Z, Li F, Li X.
    J Agric Food Chem; 2020 May 20; 68(20):5529-5538. PubMed ID: 32372640
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.