These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


188 related items for PubMed ID: 24933471

  • 1. Pressure-Dependent Properties of Elementary Hydrophobic Interactions: Ramifications for Activation Properties of Protein Folding.
    Dias CL, Chan HS.
    J Phys Chem B; 2014 Jul 10; 118(27):7488-7509. PubMed ID: 24933471
    [Abstract] [Full Text] [Related]

  • 2. Pressure and temperature dependence of hydrophobic hydration: volumetric, compressibility, and thermodynamic signatures.
    Moghaddam MS, Chan HS.
    J Chem Phys; 2007 Mar 21; 126(11):114507. PubMed ID: 17381220
    [Abstract] [Full Text] [Related]

  • 3. Temperature dependence of three-body hydrophobic interactions: potential of mean force, enthalpy, entropy, heat capacity, and nonadditivity.
    Moghaddam MS, Shimizu S, Chan HS.
    J Am Chem Soc; 2005 Jan 12; 127(1):303-16. PubMed ID: 15631480
    [Abstract] [Full Text] [Related]

  • 4. Origins of protein denatured state compactness and hydrophobic clustering in aqueous urea: inferences from nonpolar potentials of mean force.
    Shimizu S, Chan HS.
    Proteins; 2002 Dec 01; 49(4):560-6. PubMed ID: 12402364
    [Abstract] [Full Text] [Related]

  • 5. Molecular dynamics simulations of pressure effects on hydrophobic interactions.
    Ghosh T, García AE, Garde S.
    J Am Chem Soc; 2001 Nov 07; 123(44):10997-1003. PubMed ID: 11686704
    [Abstract] [Full Text] [Related]

  • 6. Potential of mean force of hydrophobic association: dependence on solute size.
    Sobolewski E, Makowski M, Czaplewski C, Liwo A, Ołdziej S, Scheraga HA.
    J Phys Chem B; 2007 Sep 13; 111(36):10765-74. PubMed ID: 17713937
    [Abstract] [Full Text] [Related]

  • 7. Towards temperature-dependent coarse-grained potentials of side-chain interactions for protein folding simulations. I: molecular dynamics study of a pair of methane molecules in water at various temperatures.
    Sobolewski E, Makowski M, Oldziej S, Czaplewski C, Liwo A, Scheraga HA.
    Protein Eng Des Sel; 2009 Sep 13; 22(9):547-52. PubMed ID: 19556395
    [Abstract] [Full Text] [Related]

  • 8. Studying pressure denaturation of a protein by molecular dynamics simulations.
    Sarupria S, Ghosh T, García AE, Garde S.
    Proteins; 2010 May 15; 78(7):1641-51. PubMed ID: 20146357
    [Abstract] [Full Text] [Related]

  • 9. Pressure-jump studies of the folding/unfolding of trp repressor.
    Desai G, Panick G, Zein M, Winter R, Royer CA.
    J Mol Biol; 1999 May 07; 288(3):461-75. PubMed ID: 10329154
    [Abstract] [Full Text] [Related]

  • 10. Anti-cooperativity and cooperativity in hydrophobic interactions: Three-body free energy landscapes and comparison with implicit-solvent potential functions for proteins.
    Shimizu S, Chan HS.
    Proteins; 2002 Jul 01; 48(1):15-30. PubMed ID: 12012334
    [Abstract] [Full Text] [Related]

  • 11. Potential of mean force between hydrophobic solutes in the Jagla model of water and implications for cold denaturation of proteins.
    Maiti M, Weiner S, Buldyrev SV, Stanley HE, Sastry S.
    J Chem Phys; 2012 Jan 28; 136(4):044512. PubMed ID: 22299896
    [Abstract] [Full Text] [Related]

  • 12. Protein hydration and unfolding--insights from experimental partial specific volumes and unfolded protein models.
    Murphy LR, Matubayasi N, Payne VA, Levy RM.
    Fold Des; 1998 Jan 28; 3(2):105-18. PubMed ID: 9565755
    [Abstract] [Full Text] [Related]

  • 13. Volume, expansivity and isothermal compressibility changes associated with temperature and pressure unfolding of Staphylococcal nuclease.
    Seemann H, Winter R, Royer CA.
    J Mol Biol; 2001 Apr 06; 307(4):1091-102. PubMed ID: 11286558
    [Abstract] [Full Text] [Related]

  • 14. Molecular simulation study of cooperativity in hydrophobic association: clusters of four hydrophobic particles.
    Czaplewski C, Rodziewicz-Motowidło S, Dabal M, Liwo A, Ripoll DR, Scheraga HA.
    Biophys Chem; 2003 Sep 06; 105(2-3):339-59. PubMed ID: 14499903
    [Abstract] [Full Text] [Related]

  • 15. A nucleation-based method to study hydrophobic interactions under confinement: enhanced hydrophobic association driven by energetic contributions.
    Kim H, Keasler SJ, Chen B.
    J Phys Chem B; 2014 Jun 19; 118(24):6875-84. PubMed ID: 24853272
    [Abstract] [Full Text] [Related]

  • 16. Probing the transition state ensemble of a protein folding reaction by pressure-dependent NMR relaxation dispersion.
    Korzhnev DM, Bezsonova I, Evanics F, Taulier N, Zhou Z, Bai Y, Chalikian TV, Prosser RS, Kay LE.
    J Am Chem Soc; 2006 Apr 19; 128(15):5262-9. PubMed ID: 16608362
    [Abstract] [Full Text] [Related]

  • 17. Investigation of the salting out of methane from aqueous electrolyte solutions using computer simulations.
    Docherty H, Galindo A, Sanz E, Vega C.
    J Phys Chem B; 2007 Aug 02; 111(30):8993-9000. PubMed ID: 17595128
    [Abstract] [Full Text] [Related]

  • 18. The hydration of globular proteins as derived from volume and compressibility measurements: cross correlating thermodynamic and structural data.
    Chalikian TV, Totrov M, Abagyan R, Breslauer KJ.
    J Mol Biol; 1996 Jul 26; 260(4):588-603. PubMed ID: 8759322
    [Abstract] [Full Text] [Related]

  • 19. Partial volumes and compressibilities of extended polypeptide chains in aqueous solution: additivity scheme and implication of protein unfolding at normal and high pressure.
    Kharakoz DP.
    Biochemistry; 1997 Aug 19; 36(33):10276-85. PubMed ID: 9254626
    [Abstract] [Full Text] [Related]

  • 20. Energy barriers, cooperativity, and hidden intermediates in the folding of small proteins.
    Bai Y.
    Biochem Biophys Res Commun; 2006 Feb 17; 340(3):976-83. PubMed ID: 16405866
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.