These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Effect of particle size on activation energy and peak temperature of the thermoluminescence glow curve of undoped ZnS nanoparticles. Chandra BP, Chandrakar RK, Chandra VK, Baghel RN. Luminescence; 2016 Mar; 31(2):478-486. PubMed ID: 26332287 [Abstract] [Full Text] [Related]
4. Effect of capping agent concentration on thermoluminescence and photoluminescence of copper-doped zinc sulfide nanoparticles. Wanjari L, Bisen DP, Brahme N, Sahu IP, Sharma R. Luminescence; 2015 Aug; 30(5):655-9. PubMed ID: 25377525 [Abstract] [Full Text] [Related]
6. Influence of thiol capping on the photoluminescence properties of L-cysteine-, mercaptoethanol- and mercaptopropionic acid-capped ZnS nanoparticles. Tiwari A, Dhoble SJ, Kher RS. Luminescence; 2015 Nov; 30(7):1148-52. PubMed ID: 25683960 [Abstract] [Full Text] [Related]
7. Synthesis, effect of capping agents and optical properties of manganese-doped zinc sulphide nanoparticles. Murugadoss G, Ramasamy V. Luminescence; 2013 Nov; 28(1):69-75. PubMed ID: 22730304 [Abstract] [Full Text] [Related]
8. Multicolor tuning of manganese-doped ZnS colloidal nanocrystals. Quan Z, Yang D, Li C, Kong D, Yang P, Cheng Z, Lin J. Langmuir; 2009 Sep 01; 25(17):10259-62. PubMed ID: 19705902 [Abstract] [Full Text] [Related]
9. Synthesis and optical characterization of single phased ZnS:Mn²⁺/CdS core-shell nanoparticles. Murugadoss G, Ramasamy V. Spectrochim Acta A Mol Biomol Spectrosc; 2012 Jul 01; 93():70-4. PubMed ID: 22465770 [Abstract] [Full Text] [Related]
11. Syntheses of the Water-Dispersible Glycolic Acid Capped ZnS:Mn Nanocrystals at Different pH Conditions, and Their Aggregation and Luminescence Quenching Effects in Aqueous Solution. Sim YJ, Hwang CS. J Nanosci Nanotechnol; 2016 Jun 01; 16(6):6281-8. PubMed ID: 27427703 [Abstract] [Full Text] [Related]
12. Size-dependent optical properties of bio-compatible ZnS:Mn nanocrystals and their application in the immobilisation of trypsin. Sajimol Augustine M, Manzur Ali PP, Sapna K, Elyas KK, Jayalekshmi S. Spectrochim Acta A Mol Biomol Spectrosc; 2013 May 01; 108():223-8. PubMed ID: 23474481 [Abstract] [Full Text] [Related]
13. Highly luminescent and biocompatible, L-citrulline-capped ZnS:Mn nanocrystals for rapid screening of metal accumulating Lysinibacillus fusiformis bacteria. Sajimol AM, Roselin A, Sreevalsa VG, Deepa GD, Bhat Sarita G, Jayalekshmi S. Luminescence; 2013 May 01; 28(4):461-7. PubMed ID: 23494908 [Abstract] [Full Text] [Related]
16. Antifungal activity of wide band gap Thioglycolic acid capped ZnS:Mn semiconductor nanoparticles against some pathogenic fungi. Ibrahim IM, Ali IM, Dheeb BI, Abas QA, Asmeit Ramizy, Eisa MH, Aljameel AI. Mater Sci Eng C Mater Biol Appl; 2017 Apr 01; 73():665-669. PubMed ID: 28183658 [Abstract] [Full Text] [Related]
17. Optical studies of CdS:Mn nanoparticles. Sharma R. Luminescence; 2012 Apr 01; 27(6):501-4. PubMed ID: 22213486 [Abstract] [Full Text] [Related]
18. Photoluminescence and photoconductivity of ZnS:Mn(2+) nanoparticles synthesized via co-precipitation method. Kripal R, Gupta AK, Mishra SK, Srivastava RK, Pandey AC, Prakash SG. Spectrochim Acta A Mol Biomol Spectrosc; 2010 Sep 01; 76(5):523-30. PubMed ID: 20452818 [Abstract] [Full Text] [Related]