These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
171 related items for PubMed ID: 24954123
1. Fast multipoint immobilized MOF bioreactor. Liu WL, Wu CY, Chen CY, Singco B, Lin CH, Huang HY. Chemistry; 2014 Jul 14; 20(29):8923-8. PubMed ID: 24954123 [Abstract] [Full Text] [Related]
2. Novel superparamagnetic sanoparticles for trypsin immobilization and the application for efficient proteolysis. Sun J, Hu K, Liu Y, Pan Y, Yang Y. J Chromatogr B Analyt Technol Biomed Life Sci; 2013 Dec 30; 942-943():9-14. PubMed ID: 24211332 [Abstract] [Full Text] [Related]
3. Efficient proteolysis using a regenerable metal-ion chelate immobilized enzyme reactor supported on organic-inorganic hybrid silica monolith. Ma J, Hou C, Liang Y, Wang T, Liang Z, Zhang L, Zhang Y. Proteomics; 2011 Mar 30; 11(5):991-5. PubMed ID: 21280225 [Abstract] [Full Text] [Related]
4. Lipase-supported metal-organic framework bioreactor catalyzes warfarin synthesis. Liu WL, Yang NS, Chen YT, Lirio S, Wu CY, Lin CH, Huang HY. Chemistry; 2015 Jan 02; 21(1):115-9. PubMed ID: 25384625 [Abstract] [Full Text] [Related]
5. A novel organic-inorganic hybrid monolith for trypsin immobilization. Wu S, Ma J, Yang K, Liu J, Liang Z, Zhang L, Zhang Y. Sci China Life Sci; 2011 Jan 02; 54(1):54-9. PubMed ID: 21253871 [Abstract] [Full Text] [Related]
6. Immobilization of enzyme on detonation nanodiamond for highly efficient proteolysis. Wei L, Zhang W, Lu H, Yang P. Talanta; 2010 Jan 15; 80(3):1298-304. PubMed ID: 20006091 [Abstract] [Full Text] [Related]
7. Immobilization of trypsin via graphene oxide-silica composite for efficient microchip proteolysis. Bao H, Zhang L, Chen G. J Chromatogr A; 2013 Oct 04; 1310():74-81. PubMed ID: 23998335 [Abstract] [Full Text] [Related]
8. Immobilized trypsin on epoxy organic monoliths with modulated hydrophilicity: novel bioreactors useful for protein analysis by liquid chromatography coupled to tandem mass spectrometry. Calleri E, Temporini C, Gasparrini F, Simone P, Villani C, Ciogli A, Massolini G. J Chromatogr A; 2011 Dec 09; 1218(49):8937-45. PubMed ID: 21679957 [Abstract] [Full Text] [Related]
9. Rational synthesis of novel recyclable Fe₃O₄@MOF nanocomposites for enzymatic digestion. Zhao M, Zhang X, Deng C. Chem Commun (Camb); 2015 May 11; 51(38):8116-9. PubMed ID: 25869528 [Abstract] [Full Text] [Related]
10. Hydrolysis of casein from different sources by immobilized trypsin on biochar: Effect of immobilization method. Souza Júnior EC, Santos MPF, Sampaio VS, Ferrão SPB, Fontan RCI, Bonomo RCF, Veloso CM. J Chromatogr B Analyt Technol Biomed Life Sci; 2020 Jun 01; 1146():122124. PubMed ID: 32361468 [Abstract] [Full Text] [Related]
11. Trypsin immobilization on hairy polymer chains hybrid magnetic nanoparticles for ultra fast, highly efficient proteome digestion, facile 18O labeling and absolute protein quantification. Qin W, Song Z, Fan C, Zhang W, Cai Y, Zhang Y, Qian X. Anal Chem; 2012 Apr 03; 84(7):3138-44. PubMed ID: 22413971 [Abstract] [Full Text] [Related]
12. Layer-by-Layer Assembly of Metal-Organic Frameworks in Macroporous Polymer Monolith and Their Use for Enzyme Immobilization. Wen L, Gao A, Cao Y, Svec F, Tan T, Lv Y. Macromol Rapid Commun; 2016 Mar 03; 37(6):551-7. PubMed ID: 26806691 [Abstract] [Full Text] [Related]
13. Immobilization of trypsin on poly(urea-formaldehyde)-coated fiberglass cores in microchip for highly efficient proteolysis. Fan H, Bao H, Zhang L, Chen G. Proteomics; 2011 Aug 03; 11(16):3420-3. PubMed ID: 21751341 [Abstract] [Full Text] [Related]
14. One-pot synthesis of trypsin-based magnetic metal-organic frameworks for highly efficient proteolysis. Zhong C, Lei Z, Huang H, Zhang M, Cai Z, Lin Z. J Mater Chem B; 2020 Jun 07; 8(21):4642-4647. PubMed ID: 32373807 [Abstract] [Full Text] [Related]
15. Fast multipoint immobilization of lipase through chiral L-proline on a MOF as a chiral bioreactor. Lirio S, Shih YH, So PB, Liu LH, Yen YT, Furukawa S, Liu WL, Huang HY, Lin CH. Dalton Trans; 2021 Feb 09; 50(5):1866-1873. PubMed ID: 33470994 [Abstract] [Full Text] [Related]
16. Immobilization of trypsin on silica-coated fiberglass core in microchip for highly efficient proteolysis. Liu T, Wang S, Chen G. Talanta; 2009 Mar 15; 77(5):1767-73. PubMed ID: 19159796 [Abstract] [Full Text] [Related]
17. Immobilization of trypsin in the layer-by-layer coating of graphene oxide and chitosan on in-channel glass fiber for microfluidic proteolysis. Bao H, Chen Q, Zhang L, Chen G. Analyst; 2011 Dec 21; 136(24):5190-6. PubMed ID: 22013584 [Abstract] [Full Text] [Related]
18. Microchip bioreactors based on trypsin-immobilized graphene oxide-poly(urea-formaldehyde) composite coating for efficient peptide mapping. Fan H, Yao F, Xu S, Chen G. Talanta; 2013 Dec 15; 117():119-26. PubMed ID: 24209319 [Abstract] [Full Text] [Related]
19. Proteolysis approach without chemical modification for a simple and rapid analysis of disulfide bonds using thermostable protease-immobilized microreactors. Yamaguchi H, Miyazaki M, Maeda H. Proteomics; 2010 Aug 15; 10(16):2942-9. PubMed ID: 20544732 [Abstract] [Full Text] [Related]
20. Protein-coated polymer as a matrix for enzyme immobilization: immobilization of trypsin on bovine serum albumin-coated allyl glycidyl ether-ethylene glycol dimethacrylate copolymer. Jasti LS, Dola SR, Kumaraguru T, Bajja S, Fadnavis NW, Addepally U, Rajdeo K, Ponrathnam S, Deokar S. Biotechnol Prog; 2014 Aug 15; 30(2):317-23. PubMed ID: 24449609 [Abstract] [Full Text] [Related] Page: [Next] [New Search]