These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


93 related items for PubMed ID: 24956232

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Characterizing liquid redistribution in a biphasic vibrating vocal fold using finite element analysis.
    Kvit AA, Devine EE, Jiang JJ, Vamos AC, Tao C.
    J Voice; 2015 May; 29(3):265-72. PubMed ID: 25619469
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Validation of theoretical models of phonation threshold pressure with data from a vocal fold mechanical replica.
    Lucero JC, Van Hirtum A, Ruty N, Cisonni J, Pelorson X.
    J Acoust Soc Am; 2009 Feb; 125(2):632-5. PubMed ID: 19206840
    [Abstract] [Full Text] [Related]

  • 5. Mechanical stress during phonation in a self-oscillating finite-element vocal fold model.
    Tao C, Jiang JJ.
    J Biomech; 2007 Feb; 40(10):2191-8. PubMed ID: 17187805
    [Abstract] [Full Text] [Related]

  • 6. Effects of poroelastic coefficients on normal vibration modes in vocal-fold tissues.
    Tao C, Liu X.
    J Acoust Soc Am; 2011 Feb; 129(2):934-43. PubMed ID: 21361450
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Experimental analysis of the characteristics of artificial vocal folds.
    Misun V, Svancara P, Vasek M.
    J Voice; 2011 May; 25(3):308-18. PubMed ID: 20359864
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Modal response of a computational vocal fold model with a substrate layer of adipose tissue.
    Jones CL, Achuthan A, Erath BD.
    J Acoust Soc Am; 2015 Feb; 137(2):EL158-64. PubMed ID: 25698044
    [Abstract] [Full Text] [Related]

  • 11. Measurement of vocal fold collision forces during phonation: methods and preliminary data.
    Gunter HE, Howe RD, Zeitels SM, Kobler JB, Hillman RE.
    J Speech Lang Hear Res; 2005 Jun; 48(3):567-76. PubMed ID: 16197273
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Spectral analysis of digital kymography in normal adult vocal fold vibration.
    Chen W, Woo P, Murry T.
    J Voice; 2014 May; 28(3):356-61. PubMed ID: 24412039
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Vocal fold and ventricular fold vibration in period-doubling phonation: physiological description and aerodynamic modeling.
    Bailly L, Henrich N, Pelorson X.
    J Acoust Soc Am; 2010 May; 127(5):3212-22. PubMed ID: 21117769
    [Abstract] [Full Text] [Related]

  • 16. Predictions of fundamental frequency changes during phonation based on a biomechanical model of the vocal fold lamina propria.
    Zhang K, Siegmund T, Chan RW, Fu M.
    J Voice; 2009 May; 23(3):277-82. PubMed ID: 18191379
    [Abstract] [Full Text] [Related]

  • 17. The importance of hyaluronic acid in vocal fold biomechanics.
    Chan RW, Gray SD, Titze IR.
    Otolaryngol Head Neck Surg; 2001 Jun; 124(6):607-14. PubMed ID: 11391249
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Material and shape optimization for multi-layered vocal fold models using transient loadings.
    Schmidt B, Leugering G, Stingl M, Hüttner B, Agaimy A, Döllinger M.
    J Acoust Soc Am; 2013 Aug; 134(2):1261-70. PubMed ID: 23927124
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 5.