These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
172 related items for PubMed ID: 24958227
1. Prey pursuit strategy of Japanese horseshoe bats during an in-flight target-selection task. Kinoshita Y, Ogata D, Watanabe Y, Riquimaroux H, Ohta T, Hiryu S. J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2014 Sep; 200(9):799-809. PubMed ID: 24958227 [Abstract] [Full Text] [Related]
2. Echolocation behavior of the Japanese horseshoe bat in pursuit of fluttering prey. Mantani S, Hiryu S, Fujioka E, Matsuta N, Riquimaroux H, Watanabe Y. J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2012 Oct; 198(10):741-51. PubMed ID: 22777677 [Abstract] [Full Text] [Related]
3. Adaptive beam-width control of echolocation sounds by CF-FM bats, Rhinolophus ferrumequinum nippon, during prey-capture flight. Matsuta N, Hiryu S, Fujioka E, Yamada Y, Riquimaroux H, Watanabe Y. J Exp Biol; 2013 Apr 01; 216(Pt 7):1210-8. PubMed ID: 23487269 [Abstract] [Full Text] [Related]
4. Coordinated Control of Acoustical Field of View and Flight in Three-Dimensional Space for Consecutive Capture by Echolocating Bats during Natural Foraging. Sumiya M, Fujioka E, Motoi K, Kondo M, Hiryu S. PLoS One; 2017 Apr 01; 12(1):e0169995. PubMed ID: 28085936 [Abstract] [Full Text] [Related]
5. Doppler-shift compensation in the Taiwanese leaf-nosed bat (Hipposideros terasensis) recorded with a telemetry microphone system during flight. Hiryu S, Katsura K, Lin LK, Riquimaroux H, Watanabe Y. J Acoust Soc Am; 2005 Dec 01; 118(6):3927-33. PubMed ID: 16419835 [Abstract] [Full Text] [Related]
6. On-board telemetry of emitted sounds from free-flying bats: compensation for velocity and distance stabilizes echo frequency and amplitude. Hiryu S, Shiori Y, Hosokawa T, Riquimaroux H, Watanabe Y. J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2008 Sep 01; 194(9):841-51. PubMed ID: 18663454 [Abstract] [Full Text] [Related]
7. Species-specific control of acoustic gaze by echolocating bats, Rhinolophus ferrumequinum nippon and Pipistrellus abramus, during flight. Yamada Y, Hiryu S, Watanabe Y. J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2016 Nov 01; 202(11):791-801. PubMed ID: 27566319 [Abstract] [Full Text] [Related]
8. Qualitative and quantitative analyses of the echolocation strategies of bats on the basis of mathematical modelling and laboratory experiments. Aihara I, Fujioka E, Hiryu S. PLoS One; 2013 Nov 01; 8(7):e68635. PubMed ID: 23861930 [Abstract] [Full Text] [Related]
9. Reconstruction of echoes reaching bats in flight from arbitrary targets by acoustic simulation. Teshima Y, Hasegawa Y, Tsuchiya T, Moriyama R, Genda S, Kawamura T, Hiryu S. J Acoust Soc Am; 2022 Mar 01; 151(3):2127. PubMed ID: 35364898 [Abstract] [Full Text] [Related]
10. Echolocating bats use future-target information for optimal foraging. Fujioka E, Aihara I, Sumiya M, Aihara K, Hiryu S. Proc Natl Acad Sci U S A; 2016 Apr 26; 113(17):4848-52. PubMed ID: 27071082 [Abstract] [Full Text] [Related]
11. Pulse-echo interaction in free-flying horseshoe bats, Rhinolophus ferrumequinum nippon. Shiori Y, Hiryu S, Watanabe Y, Riquimaroux H, Watanabe Y. J Acoust Soc Am; 2009 Sep 26; 126(3):EL80-5. PubMed ID: 19739702 [Abstract] [Full Text] [Related]
12. High-frequency soundfield microphone for the analysis of bat biosonar. Lee H, Roan MJ, Ming C, Simmons JA, Wang R, Müller R. J Acoust Soc Am; 2019 Dec 26; 146(6):4525. PubMed ID: 31893689 [Abstract] [Full Text] [Related]
13. Echolocation and flight strategy of Japanese house bats during natural foraging, revealed by a microphone array system. Fujioka E, Mantani S, Hiryu S, Riquimaroux H, Watanabe Y. J Acoust Soc Am; 2011 Feb 26; 129(2):1081-8. PubMed ID: 21361464 [Abstract] [Full Text] [Related]
14. Early erratic flight response of the lucerne moth to the quiet echolocation calls of distant bats. Nakano R, Mason AC. PLoS One; 2018 Feb 26; 13(8):e0202679. PubMed ID: 30125318 [Abstract] [Full Text] [Related]
15. High duty cycle pulses suppress orientation flights of crambid moths. Nakano R, Ihara F, Mishiro K, Toyama M, Toda S. J Insect Physiol; 2015 Dec 26; 83():15-21. PubMed ID: 26549128 [Abstract] [Full Text] [Related]
16. Modeling bat prey capture in echolocating bats: The feasibility of reactive pursuit. Vanderelst D, Peremans H. J Theor Biol; 2018 Nov 07; 456():305-314. PubMed ID: 30102889 [Abstract] [Full Text] [Related]
17. How do tiger moths jam bat sonar? Corcoran AJ, Barber JR, Hristov NI, Conner WE. J Exp Biol; 2011 Jul 15; 214(Pt 14):2416-25. PubMed ID: 21697434 [Abstract] [Full Text] [Related]
18. Effects of competitive prey capture on flight behavior and sonar beam pattern in paired big brown bats, Eptesicus fuscus. Chiu C, Reddy PV, Xian W, Krishnaprasad PS, Moss CF. J Exp Biol; 2010 Oct 01; 213(Pt 19):3348-56. PubMed ID: 20833928 [Abstract] [Full Text] [Related]
19. Can the elongated hindwing tails of fluttering moths serve as false sonar targets to divert bat attacks? Lee WJ, Moss CF. J Acoust Soc Am; 2016 May 01; 139(5):2579. PubMed ID: 27250152 [Abstract] [Full Text] [Related]
20. Dominant glint based prey localization in horseshoe bats: a possible strategy for noise rejection. Vanderelst D, Reijniers J, Firzlaff U, Peremans H. PLoS Comput Biol; 2011 Dec 01; 7(12):e1002268. PubMed ID: 22144876 [Abstract] [Full Text] [Related] Page: [Next] [New Search]