These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


172 related items for PubMed ID: 24958227

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23. Modulation of acoustic navigation behaviour by spatial learning in the echolocating bat Rhinolophus ferrumequinum nippon.
    Yamada Y, Mibe Y, Yamamoto Y, Ito K, Heim O, Hiryu S.
    Sci Rep; 2020 Jul 01; 10(1):10751. PubMed ID: 32612132
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26. Bats Actively Use Leaves as Specular Reflectors to Detect Acoustically Camouflaged Prey.
    Geipel I, Steckel J, Tschapka M, Vanderelst D, Schnitzler HU, Kalko EKV, Peremans H, Simon R.
    Curr Biol; 2019 Aug 19; 29(16):2731-2736.e3. PubMed ID: 31378617
    [Abstract] [Full Text] [Related]

  • 27. Big brown bats (Eptesicus fuscus) emit intense search calls and fly in stereotyped flight paths as they forage in the wild.
    Hulgard K, Moss CF, Jakobsen L, Surlykke A.
    J Exp Biol; 2016 Feb 19; 219(Pt 3):334-40. PubMed ID: 26596537
    [Abstract] [Full Text] [Related]

  • 28. Evolutionary escalation: the bat-moth arms race.
    Ter Hofstede HM, Ratcliffe JM.
    J Exp Biol; 2016 Jun 01; 219(Pt 11):1589-602. PubMed ID: 27252453
    [Abstract] [Full Text] [Related]

  • 29. Detection of prey in a cluttered environment by the northern bat Eptesicus nilssonii.
    Jensen ME, Miller LA, Rydell J.
    J Exp Biol; 2001 Jan 01; 204(Pt 2):199-208. PubMed ID: 11136606
    [Abstract] [Full Text] [Related]

  • 30. Ventral wing hairs provide tactile feedback for aerial prey capture in the big brown bat, Eptesicus fuscus.
    Boublil BL, Yu C, Shewmaker G, Sterbing S, Moss CF.
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2024 Sep 01; 210(5):761-770. PubMed ID: 38097720
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32. Echolocation signals of the greater horseshoe bat (Rhinolophus ferrumequinum) in transfer flight and during landing.
    Tian B, Schnitzler HU.
    J Acoust Soc Am; 1997 Apr 01; 101(4):2347-64. PubMed ID: 9104033
    [Abstract] [Full Text] [Related]

  • 33. Echo-intensity compensation in echolocating bats (Pipistrellus abramus) during flight measured by a telemetry microphone.
    Hiryu S, Hagino T, Riquimaroux H, Watanabe Y.
    J Acoust Soc Am; 2007 Mar 01; 121(3):1749-57. PubMed ID: 17407911
    [Abstract] [Full Text] [Related]

  • 34. Vision complements echolocation in an aerial-hawking bat.
    Rydell J, Eklöf J.
    Naturwissenschaften; 2003 Oct 01; 90(10):481-3. PubMed ID: 14564410
    [Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Analysis of echolocation behavior of bats in "echo space" using acoustic simulation.
    Teshima Y, Yamada Y, Tsuchiya T, Heim O, Hiryu S.
    BMC Biol; 2022 Mar 14; 20(1):59. PubMed ID: 35282831
    [Abstract] [Full Text] [Related]

  • 38. How moths escape bats: predicting outcomes of predator-prey interactions.
    Corcoran AJ, Conner WE.
    J Exp Biol; 2016 Sep 01; 219(Pt 17):2704-15. PubMed ID: 27340205
    [Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.