These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Inactivation of intestinal alkaline phosphatase by inositol hexaphosphate-Cu (II) coordinate complexes. Martin CJ, Evans WJ. J Inorg Biochem; 1991 May 15; 42(3):161-75. PubMed ID: 1880498 [Abstract] [Full Text] [Related]
4. Characterization of an inhibitory metal binding site in carboxypeptidase A. Larsen KS, Auld DS. Biochemistry; 1991 Mar 12; 30(10):2613-8. PubMed ID: 2001351 [Abstract] [Full Text] [Related]
5. Heat of complex formation of A1(III) and Cd(II) with phytic acid. IX. Evans WJ, Martin CJ. J Inorg Biochem; 1988 Sep 12; 34(1):11-8. PubMed ID: 3216199 [Abstract] [Full Text] [Related]
7. Inactivation of metalloenzymes by food constituents. Friedman M, Grosjean OK, Zahnley JC. Food Chem Toxicol; 1986 Sep 12; 24(9):897-902. PubMed ID: 3096851 [Abstract] [Full Text] [Related]
8. Interaction of zinc ions with arsanilazotyrosine-248 carboxypeptidase A. Hirose J, Noji M, Kidani Y, Wilkins RG. Biochemistry; 1985 Jul 02; 24(14):3495-502. PubMed ID: 4041425 [Abstract] [Full Text] [Related]
9. Phytic acid-metal ion interactions. II. The effect of pH on Ca(II) binding. Martin CJ, Evans WJ. J Inorg Biochem; 1986 May 02; 27(1):17-30. PubMed ID: 3711890 [Abstract] [Full Text] [Related]
12. Studies on the phytate: zinc molar contents in diets as a determinant of Zn availability to young rats. Davies NT, Olpin SE. Br J Nutr; 1979 May 02; 41(3):590-603. PubMed ID: 572702 [Abstract] [Full Text] [Related]
13. Preparation by direct metal exchange and kinetic study of active site metal substituted class I and class II Clostridium histolyticum collagenases. Angleton EL, Van Wart HE. Biochemistry; 1988 Sep 20; 27(19):7413-8. PubMed ID: 2849992 [Abstract] [Full Text] [Related]
14. Excess zinc ions are a competitive inhibitor for carboxypeptidase A. Hirose J, Ando S, Kidani Y. Biochemistry; 1987 Oct 06; 26(20):6561-5. PubMed ID: 3427026 [Abstract] [Full Text] [Related]
15. Speciation of phytate ion in aqueous solution. Cadmium(II) interactions in aqueous NaCl at different ionic strengths. De Stefano C, Milea D, Porcino N, Sammartano S. Anal Bioanal Chem; 2006 Sep 06; 386(2):346-56. PubMed ID: 16847619 [Abstract] [Full Text] [Related]
16. Role of metal complexation on the solubility and enzymatic hydrolysis of phytate. Sun M, He Z, Jaisi DP. PLoS One; 2021 Sep 06; 16(8):e0255787. PubMed ID: 34388208 [Abstract] [Full Text] [Related]
17. Thermostable alkaline phytase from Bacillus sp. MD2: effect of divalent metals on activity and stability. Tran TT, Hashim SO, Gaber Y, Mamo G, Mattiasson B, Hatti-Kaul R. J Inorg Biochem; 2011 Jul 06; 105(7):1000-7. PubMed ID: 21569752 [Abstract] [Full Text] [Related]
19. Thioamide substrate probes of metal-substrate interactions in carboxypeptidase A catalysis. Bond MD, Holmquist B, Vallee BL. J Inorg Biochem; 1986 Jul 06; 28(2-3):97-105. PubMed ID: 3806099 [Abstract] [Full Text] [Related]
20. Synthesis, potentiometric, kinetic, and NMR Studies of 1,4,7,10-tetraazacyclododecane-1,7-bis(acetic acid)-4,10-bis(methylenephosphonic acid) (DO2A2P) and its complexes with Ca(II), Cu(II), Zn(II) and lanthanide(III) ions. Kálmán FK, Baranyai Z, Tóth I, Bányai I, Király R, Brücher E, Aime S, Sun X, Sherry AD, Kovács Z. Inorg Chem; 2008 May 05; 47(9):3851-62. PubMed ID: 18380456 [Abstract] [Full Text] [Related] Page: [Next] [New Search]