These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
150 related items for PubMed ID: 24963481
41. Predicting essential proteins by integrating orthology, gene expressions, and PPI networks. Zhang X, Xiao W, Hu X. PLoS One; 2018; 13(4):e0195410. PubMed ID: 29634727 [Abstract] [Full Text] [Related]
42. Modular biological function is most effectively captured by combining molecular interaction data types. Ames RM, Macpherson JI, Pinney JW, Lovell SC, Robertson DL. PLoS One; 2013; 8(5):e62670. PubMed ID: 23658761 [Abstract] [Full Text] [Related]
43. Development and implementation of an algorithm for detection of protein complexes in large interaction networks. Altaf-Ul-Amin M, Shinbo Y, Mihara K, Kurokawa K, Kanaya S. BMC Bioinformatics; 2006 Apr 14; 7():207. PubMed ID: 16613608 [Abstract] [Full Text] [Related]
44. Identifying protein complexes and functional modules--from static PPI networks to dynamic PPI networks. Chen B, Fan W, Liu J, Wu FX. Brief Bioinform; 2014 Mar 14; 15(2):177-94. PubMed ID: 23780996 [Abstract] [Full Text] [Related]
45. A new two-stage method for revealing missing parts of edges in protein-protein interaction networks. Zhang W, Xu J, Li Y, Zou X. PLoS One; 2017 Mar 14; 12(5):e0177029. PubMed ID: 28493910 [Abstract] [Full Text] [Related]
47. Efficient and accurate Greedy Search Methods for mining functional modules in protein interaction networks. He J, Li C, Ye B, Zhong W. BMC Bioinformatics; 2012 Jun 25; 13 Suppl 10(Suppl 10):S19. PubMed ID: 22759424 [Abstract] [Full Text] [Related]
48. A max-flow-based approach to the identification of protein complexes using protein interaction and microarray data. Feng J, Jiang R, Jiang T. IEEE/ACM Trans Comput Biol Bioinform; 2011 Jun 25; 8(3):621-34. PubMed ID: 20733237 [Abstract] [Full Text] [Related]
49. Computational discovery of gene modules and regulatory networks. Bar-Joseph Z, Gerber GK, Lee TI, Rinaldi NJ, Yoo JY, Robert F, Gordon DB, Fraenkel E, Jaakkola TS, Young RA, Gifford DK. Nat Biotechnol; 2003 Nov 25; 21(11):1337-42. PubMed ID: 14555958 [Abstract] [Full Text] [Related]
50. An Ensemble Learning Framework for Detecting Protein Complexes From PPI Networks. Wang R, Ma H, Wang C. Front Genet; 2022 Nov 25; 13():839949. PubMed ID: 35281831 [Abstract] [Full Text] [Related]
51. Discovering molecular pathways from protein interaction and gene expression data. Segal E, Wang H, Koller D. Bioinformatics; 2003 Nov 25; 19 Suppl 1():i264-71. PubMed ID: 12855469 [Abstract] [Full Text] [Related]
52. An effective approach to detecting both small and large complexes from protein-protein interaction networks. Xu B, Wang Y, Wang Z, Zhou J, Zhou S, Guan J. BMC Bioinformatics; 2017 Oct 16; 18(Suppl 12):419. PubMed ID: 29072136 [Abstract] [Full Text] [Related]
53. A novel algorithm for detecting protein complexes with the breadth first search. Tang X, Wang J, Li M, He Y, Pan Y. Biomed Res Int; 2014 Oct 16; 2014():354539. PubMed ID: 24818139 [Abstract] [Full Text] [Related]
54. Identifying time-lagged gene clusters using gene expression data. Ji L, Tan KL. Bioinformatics; 2005 Feb 15; 21(4):509-16. PubMed ID: 15374868 [Abstract] [Full Text] [Related]
55. HKC: an algorithm to predict protein complexes in protein-protein interaction networks. Wang X, Wang Z, Ye J. J Biomed Biotechnol; 2011 Feb 15; 2011():480294. PubMed ID: 22174556 [Abstract] [Full Text] [Related]
56. Gene duplication and hierarchical modularity in intracellular interaction networks. Hallinan J. Biosystems; 2004 Feb 15; 74(1-3):51-62. PubMed ID: 15125992 [Abstract] [Full Text] [Related]
57. Mining Temporal Protein Complex Based on the Dynamic PIN Weighted with Connected Affinity and Gene Co-Expression. Shen X, Yi L, Jiang X, He T, Hu X, Yang J. PLoS One; 2016 Feb 15; 11(4):e0153967. PubMed ID: 27100396 [Abstract] [Full Text] [Related]