These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
661 related items for PubMed ID: 24971575
1. K(+)-doped Li(1.2)Mn(0.54)Co(0.13)Ni(0.13)O2: a novel cathode material with an enhanced cycling stability for lithium-ion batteries. Li Q, Li G, Fu C, Luo D, Fan J, Li L. ACS Appl Mater Interfaces; 2014 Jul 09; 6(13):10330-41. PubMed ID: 24971575 [Abstract] [Full Text] [Related]
2. The positive roles of integrated layered-spinel structures combined with nanocoating in low-cost Li-rich cathode Li[Li₀.₂Fe₀.₁Ni₀.₁₅Mn₀.₅₅]O₂ for lithium-ion batteries. Zhao T, Chen S, Chen R, Li L, Zhang X, Xie M, Wu F. ACS Appl Mater Interfaces; 2014 Dec 10; 6(23):21711-20. PubMed ID: 25402183 [Abstract] [Full Text] [Related]
3. Magnesium-Doped Li1.2[Co0.13Ni0.13Mn0.54]O2 for Lithium-Ion Battery Cathode with Enhanced Cycling Stability and Rate Capability. Wang YX, Shang KH, He W, Ai XP, Cao YL, Yang HX. ACS Appl Mater Interfaces; 2015 Jun 17; 7(23):13014-21. PubMed ID: 26011097 [Abstract] [Full Text] [Related]
4. Surface Heterostructure Induced by PrPO4 Modification in Li1.2[Mn0.54Ni0.13Co0.13]O2 Cathode Material for High-Performance Lithium-Ion Batteries with Mitigating Voltage Decay. Ding F, Li J, Deng F, Xu G, Liu Y, Yang K, Kang F. ACS Appl Mater Interfaces; 2017 Aug 23; 9(33):27936-27945. PubMed ID: 28758399 [Abstract] [Full Text] [Related]
5. Effect of Nb and F Co-doping on Li1.2Mn0.54Ni0.13Co0.13O2 Cathode Material for High-Performance Lithium-Ion Batteries. Ming L, Zhang B, Cao Y, Zhang JF, Wang CH, Wang XW, Li H. Front Chem; 2018 Aug 23; 6():76. PubMed ID: 29675405 [Abstract] [Full Text] [Related]
6. Understanding the influence of Mg doping for the stabilization of capacity and higher discharge voltage of Li- and Mn-rich cathodes for Li-ion batteries. Nayak PK, Grinblat J, Levi E, Levi M, Markovsky B, Aurbach D. Phys Chem Chem Phys; 2017 Feb 22; 19(8):6142-6152. PubMed ID: 28191568 [Abstract] [Full Text] [Related]
7. High-Capacity Layered-Spinel Cathodes for Li-Ion Batteries. Nayak PK, Levi E, Grinblat J, Levi M, Markovsky B, Munichandraiah N, Sun YK, Aurbach D. ChemSusChem; 2016 Sep 08; 9(17):2404-13. PubMed ID: 27530465 [Abstract] [Full Text] [Related]
8. Remarkably Improved Electrochemical Performance of Li- and Mn-Rich Cathodes upon Substitution of Mn with Ni. Kumar Nayak P, Grinblat J, Levi E, Penki TR, Levi M, Sun YK, Markovsky B, Aurbach D. ACS Appl Mater Interfaces; 2017 Feb 08; 9(5):4309-4319. PubMed ID: 27669499 [Abstract] [Full Text] [Related]
9. Mitigating Voltage Decay of Li-Rich Cathode Material via Increasing Ni Content for Lithium-Ion Batteries. Shi JL, Zhang JN, He M, Zhang XD, Yin YX, Li H, Guo YG, Gu L, Wan LJ. ACS Appl Mater Interfaces; 2016 Aug 10; 8(31):20138-46. PubMed ID: 27437556 [Abstract] [Full Text] [Related]
10. Role of Mn content on the electrochemical properties of nickel-rich layered LiNi(0.8-x)Co(0.1)Mn(0.1+x)O₂ (0.0 ≤ x ≤ 0.08) cathodes for lithium-ion batteries. Zheng J, Kan WH, Manthiram A. ACS Appl Mater Interfaces; 2015 Apr 01; 7(12):6926-34. PubMed ID: 25756196 [Abstract] [Full Text] [Related]
11. Performance improvement of Li-rich layer-structured Li(1.2)Mn(0.54)Ni(0.13)Co(0.13)O2 by integration with spinel LiNi(0.5)Mn(1.5)O4. Feng X, Yang Z, Tang D, Kong Q, Gu L, Wang Z, Chen L. Phys Chem Chem Phys; 2015 Jan 14; 17(2):1257-64. PubMed ID: 25420544 [Abstract] [Full Text] [Related]
12. Surface Modification of Li1.2Ni0.13Mn0.54Co0.13O2 by Hydrazine Vapor as Cathode Material for Lithium-Ion Batteries. Zhang J, Lei Z, Wang J, NuLi Y, Yang J. ACS Appl Mater Interfaces; 2015 Jul 29; 7(29):15821-9. PubMed ID: 26079270 [Abstract] [Full Text] [Related]
13. Nonstoichiometry of Li-rich cathode material with improved cycling ability for lithium-ion batteries. Tai Z, Li X, Zhu W, Shi M, Xin Y, Guo S, Wu Y, Chen Y, Liu Y. J Colloid Interface Sci; 2020 Jun 15; 570():264-272. PubMed ID: 32163788 [Abstract] [Full Text] [Related]
14. Formation of the spinel phase in the layered composite cathode used in Li-ion batteries. Gu M, Belharouak I, Zheng J, Wu H, Xiao J, Genc A, Amine K, Thevuthasan S, Baer DR, Zhang JG, Browning ND, Liu J, Wang C. ACS Nano; 2013 Jan 22; 7(1):760-7. PubMed ID: 23237664 [Abstract] [Full Text] [Related]
15. Tuning Electrochemical Properties of Li-Rich Layered Oxide Cathodes by Adjusting Co/Ni Ratios and Mechanism Investigation Using in situ X-ray Diffraction and Online Continuous Flow Differential Electrochemical Mass Spectrometry. Shen S, Hong Y, Zhu F, Cao Z, Li Y, Ke F, Fan J, Zhou L, Wu L, Dai P, Cai M, Huang L, Zhou Z, Li J, Wu Q, Sun S. ACS Appl Mater Interfaces; 2018 Apr 18; 10(15):12666-12677. PubMed ID: 29569902 [Abstract] [Full Text] [Related]
16. Spinel/Layered Heterostructured Lithium-Rich Oxide Nanowires as Cathode Material for High-Energy Lithium-Ion Batteries. Yu R, Zhang X, Liu T, Yang L, Liu L, Wang Y, Wang X, Shu H, Yang X. ACS Appl Mater Interfaces; 2017 Nov 29; 9(47):41210-41223. PubMed ID: 29115815 [Abstract] [Full Text] [Related]
17. Understanding the effect of an in situ generated and integrated spinel phase on a layered Li-rich cathode material using a non-stoichiometric strategy. Zhang J, Gao R, Sun L, Li Z, Zhang H, Hu Z, Liu X. Phys Chem Chem Phys; 2016 Sep 14; 18(36):25711-25720. PubMed ID: 27711565 [Abstract] [Full Text] [Related]
18. Hierarchical surface atomic structure of a manganese-based spinel cathode for lithium-ion batteries. Lee S, Yoon G, Jeong M, Lee MJ, Kang K, Cho J. Angew Chem Int Ed Engl; 2015 Jan 19; 54(4):1153-8. PubMed ID: 25470462 [Abstract] [Full Text] [Related]
19. Constructing a Cr-Substituted Co-Free Li-Rich Ternary Cathode with a Spinel-Layered Biphase Interface. Wu L, Li Z, Chen J, Zhang Y, Wang R, Cao S, Ding H, Liu M, Liu H, Wang X. ACS Appl Mater Interfaces; 2024 Jul 10; 16(27):34880-34891. PubMed ID: 38949126 [Abstract] [Full Text] [Related]
20. Enhanced electrochemical properties of potassium-doped lithium-rich oxide@carbon as cathode material for lithium-ion batteries. Cheng Y, Wu Z, Dai X, Hu J, Tai Z, Sun J, Liu Y, Tan Q, Liu Y. J Colloid Interface Sci; 2022 Jan 10; 605():718-726. PubMed ID: 34365308 [Abstract] [Full Text] [Related] Page: [Next] [New Search]