These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


265 related items for PubMed ID: 24971813

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Application of remote sensing for the optimization of in-situ sampling for monitoring of phytoplankton abundance in a large lake.
    Kiefer I, Odermatt D, Anneville O, Wüest A, Bouffard D.
    Sci Total Environ; 2015 Sep 15; 527-528():493-506. PubMed ID: 26002424
    [Abstract] [Full Text] [Related]

  • 8. Remote estimation of phycocyanin (PC) for inland waters coupled with YSI PC fluorescence probe.
    Song K, Li L, Tedesco L, Clercin N, Hall B, Li S, Shi K, Liu D, Sun Y.
    Environ Sci Pollut Res Int; 2013 Aug 15; 20(8):5330-40. PubMed ID: 23397212
    [Abstract] [Full Text] [Related]

  • 9. Ten-year survey of cyanobacterial blooms in Ohio's waterbodies using satellite remote sensing.
    Gorham T, Jia Y, Shum CK, Lee J.
    Harmful Algae; 2017 Jun 15; 66():13-19. PubMed ID: 28602249
    [Abstract] [Full Text] [Related]

  • 10. Use of in vivo phycocyanin fluorescence to monitor potential microcystin-producing cyanobacterial biovolume in a drinking water source.
    McQuaid N, Zamyadi A, Prévost M, Bird DF, Dorner S.
    J Environ Monit; 2011 Feb 15; 13(2):455-63. PubMed ID: 21157617
    [Abstract] [Full Text] [Related]

  • 11. Multispectral remote sensing of harmful algal blooms in Lake Champlain, USA.
    Isenstein EM, Trescott A, Park MH.
    Water Environ Res; 2014 Dec 15; 86(12):2271-8. PubMed ID: 25654929
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. An evaluation of a handheld spectroradiometer for the near real-time measurement of cyanobacteria for bloom management purposes.
    Bowling LC, Shaikh M, Brayan J, Malthus T.
    Environ Monit Assess; 2017 Sep 09; 189(10):495. PubMed ID: 28887739
    [Abstract] [Full Text] [Related]

  • 17. Ground-based remote sensing provides alternative to satellites for monitoring cyanobacteria in small lakes.
    Cook KV, Beyer JE, Xiao X, Hambright KD.
    Water Res; 2023 Aug 15; 242():120076. PubMed ID: 37352675
    [Abstract] [Full Text] [Related]

  • 18. Multi-scale strategies for the monitoring of freshwater cyanobacteria: reducing the sources of uncertainty.
    Agha R, Cirés S, Wörmer L, Domínguez JA, Quesada A.
    Water Res; 2012 Jun 01; 46(9):3043-53. PubMed ID: 22472073
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.