These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
265 related items for PubMed ID: 24971813
21. Assessment of in-situ monitoring and tracking the vertical migration of cyanobacterial blooms using LISST-HAB. Zhang Y, Yang T, Zhang Y, Xu G, Lorke A, Pan M, He F, Li Q, Xiao B, Wu X. Water Res; 2024 Jun 15; 257():121693. PubMed ID: 38728785 [Abstract] [Full Text] [Related]
22. Remote sensing of cyanobacterial blooms in a hypertrophic lagoon (Albufera of València, Eastern Iberian Peninsula) using multitemporal Sentinel-2 images. Sòria-Perpinyà X, Vicente E, Urrego P, Pereira-Sandoval M, Ruíz-Verdú A, Delegido J, Soria JM, Moreno J. Sci Total Environ; 2020 Jan 01; 698():134305. PubMed ID: 31514039 [Abstract] [Full Text] [Related]
23. Assessment of in situ fluorometry to measure cyanobacterial presence in water bodies with diverse cyanobacterial populations. Bowling LC, Zamyadi A, Henderson RK. Water Res; 2016 Nov 15; 105():22-33. PubMed ID: 27592302 [Abstract] [Full Text] [Related]
24. Identifying lakes at risk of toxic cyanobacterial blooms using satellite imagery and field surveys across the United States. Handler AM, Compton JE, Hill RA, Leibowitz SG, Schaeffer BA. Sci Total Environ; 2023 Apr 15; 869():161784. PubMed ID: 36702268 [Abstract] [Full Text] [Related]
25. Performance evaluation of phycocyanin probes for the monitoring of cyanobacteria. Bastien C, Cardin R, Veilleux E, Deblois C, Warren A, Laurion I. J Environ Monit; 2011 Jan 15; 13(1):110-8. PubMed ID: 21103573 [Abstract] [Full Text] [Related]
26. Comparison of the efficacy of MODIS and MERIS data for detecting cyanobacterial blooms in the southern Caspian Sea. Moradi M. Mar Pollut Bull; 2014 Oct 15; 87(1-2):311-322. PubMed ID: 25148755 [Abstract] [Full Text] [Related]
27. Multi-sensor satellite and in situ monitoring of phytoplankton development in a eutrophic-mesotrophic lake. Dörnhöfer K, Klinger P, Heege T, Oppelt N. Sci Total Environ; 2018 Jan 15; 612():1200-1214. PubMed ID: 28892864 [Abstract] [Full Text] [Related]
28. Establishment of an Alert Level Framework for cyanobacteria in drinking water resources by using the Algae Online Analyser for monitoring cyanobacterial chlorophyll a. Izydorczyk K, Carpentier C, Mrówczyński J, Wagenvoort A, Jurczak T, Tarczyńska M. Water Res; 2009 Mar 15; 43(4):989-96. PubMed ID: 19101006 [Abstract] [Full Text] [Related]
29. Sensor manufacturer, temperature, and cyanobacteria morphology affect phycocyanin fluorescence measurements. Hodges CM, Wood SA, Puddick J, McBride CG, Hamilton DP. Environ Sci Pollut Res Int; 2018 Jan 15; 25(2):1079-1088. PubMed ID: 29079975 [Abstract] [Full Text] [Related]
30. Summer changes in cyanobacterial bloom composition and microcystin concentration in eutrophic Czech reservoirs. Znachor P, Jurczak T, Komárková J, Jezberová J, Mankiewicz J, Kastovská K, Zapomelová E. Environ Toxicol; 2006 Jun 15; 21(3):236-43. PubMed ID: 16646018 [Abstract] [Full Text] [Related]
31. Hyperspectral determination of eutrophication for a water supply source via genetic algorithm-partial least squares (GA-PLS) modeling. Song K, Li L, Tedesco LP, Li S, Clercin NA, Hall BE, Li Z, Shi K. Sci Total Environ; 2012 Jun 01; 426():220-32. PubMed ID: 22521166 [Abstract] [Full Text] [Related]
32. Measurement of Cyanobacterial Bloom Magnitude using Satellite Remote Sensing. Mishra S, Stumpf RP, Schaeffer BA, Werdell PJ, Loftin KA, Meredith A. Sci Rep; 2019 Dec 04; 9(1):18310. PubMed ID: 31797884 [Abstract] [Full Text] [Related]
33. Comparative summer dynamics of surface cyanobacterial communities in two connected lakes from the west of Ireland. Touzet N, McCarthy D, Gill A, Fleming GTA. Sci Total Environ; 2016 May 15; 553():416-428. PubMed ID: 26930314 [Abstract] [Full Text] [Related]
34. Predicting cyanobacterial biovolumes from phycocyanin fluorescence using a handheld fluorometer in the field. Thomson-Laing G, Puddick J, Wood SA. Harmful Algae; 2020 Jul 15; 97():101869. PubMed ID: 32732055 [Abstract] [Full Text] [Related]
35. Estimation of Chlorophyll-a Concentration and the Trophic State of the Barra Bonita Hydroelectric Reservoir Using OLI/Landsat-8 Images. Watanabe FS, Alcântara E, Rodrigues TW, Imai NN, Barbosa CC, Rotta LH. Int J Environ Res Public Health; 2015 Aug 26; 12(9):10391-417. PubMed ID: 26322489 [Abstract] [Full Text] [Related]
36. A semi-analytical algorithm for remote estimation of phycocyanin in inland waters. Li L, Li L, Shi K, Li Z, Song K. Sci Total Environ; 2012 Oct 01; 435-436():141-50. PubMed ID: 22846774 [Abstract] [Full Text] [Related]
37. Predicting cyanobacterial biovolume from water temperature and conductivity using a Bayesian compound Poisson-Gamma model. Haakonsson S, Rodríguez MA, Carballo C, Pérez MDC, Arocena R, Bonilla S. Water Res; 2020 Jun 01; 176():115710. PubMed ID: 32251942 [Abstract] [Full Text] [Related]
38. MODIS observations of cyanobacterial risks in a eutrophic lake: Implications for long-term safety evaluation in drinking-water source. Duan H, Tao M, Loiselle SA, Zhao W, Cao Z, Ma R, Tang X. Water Res; 2017 Oct 01; 122():455-470. PubMed ID: 28624729 [Abstract] [Full Text] [Related]
39. Measurement of phycocyanin fluorescence as an online early warning system for cyanobacteria in reservoir intake water. Izydorczyk K, Tarczynska M, Jurczak T, Mrowczynski J, Zalewski M. Environ Toxicol; 2005 Aug 01; 20(4):425-30. PubMed ID: 16007662 [Abstract] [Full Text] [Related]
40. Cyanobacterial blooms: statistical models describing risk factors for national-scale lake assessment and lake management. Carvalho L, Miller nee Ferguson CA, Scott EM, Codd GA, Davies PS, Tyler AN. Sci Total Environ; 2011 Nov 15; 409(24):5353-8. PubMed ID: 21975001 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]