These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


312 related items for PubMed ID: 24973406

  • 1. Activation and propagation of Ca2+ release from inside the sarcoplasmic reticulum network of mammalian skeletal muscle.
    Cully TR, Edwards JN, Launikonis BS.
    J Physiol; 2014 Sep 01; 592(17):3727-46. PubMed ID: 24973406
    [Abstract] [Full Text] [Related]

  • 2. Leaky ryanodine receptors delay the activation of store overload-induced Ca2+ release, a mechanism underlying malignant hyperthermia-like events in dystrophic muscle.
    Cully TR, Launikonis BS.
    Am J Physiol Cell Physiol; 2016 Apr 15; 310(8):C673-80. PubMed ID: 26825125
    [Abstract] [Full Text] [Related]

  • 3. A novel mechanism of tandem activation of ryanodine receptors by cytosolic and SR luminal Ca2+ during excitation-contraction coupling in atrial myocytes.
    Maxwell JT, Blatter LA.
    J Physiol; 2017 Jun 15; 595(12):3835-3845. PubMed ID: 28028837
    [Abstract] [Full Text] [Related]

  • 4. Reorganized stores and impaired calcium handling in skeletal muscle of mice lacking calsequestrin-1.
    Paolini C, Quarta M, Nori A, Boncompagni S, Canato M, Volpe P, Allen PD, Reggiani C, Protasi F.
    J Physiol; 2007 Sep 01; 583(Pt 2):767-84. PubMed ID: 17627988
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Mechanistic insights into store-operated Ca2+ entry during excitation-contraction coupling in skeletal muscle.
    Koenig X, Choi RH, Schicker K, Singh DP, Hilber K, Launikonis BS.
    Biochim Biophys Acta Mol Cell Res; 2019 Jul 01; 1866(7):1239-1248. PubMed ID: 30825472
    [Abstract] [Full Text] [Related]

  • 8. Preserved Ca2+ handling and excitation-contraction coupling in muscle fibres from diet-induced obese mice.
    Jaque-Fernandez F, Beaulant A, Berthier C, Monteiro L, Allard B, Casas M, Rieusset J, Jacquemond V.
    Diabetologia; 2020 Nov 01; 63(11):2471-2481. PubMed ID: 32840676
    [Abstract] [Full Text] [Related]

  • 9. Increasing SERCA function promotes initiation of calcium sparks and breakup of calcium waves.
    Sato D, Uchinoumi H, Bers DM.
    J Physiol; 2021 Jul 01; 599(13):3267-3278. PubMed ID: 33963531
    [Abstract] [Full Text] [Related]

  • 10. The foundation of excitation-contraction coupling in skeletal muscle: communication between the transverse tubules and sarcoplasmic reticulum.
    Rall JA.
    Adv Physiol Educ; 2024 Dec 01; 48(4):759-769. PubMed ID: 39116389
    [Abstract] [Full Text] [Related]

  • 11. Sarcoplasmic Reticulum Structure and Functional Properties that Promote Long-Lasting Calcium Sparks.
    Sato D, Shannon TR, Bers DM.
    Biophys J; 2016 Jan 19; 110(2):382-390. PubMed ID: 26789761
    [Abstract] [Full Text] [Related]

  • 12. Cytoplasmic Ca2+ inhibits the ryanodine receptor from cardiac muscle.
    Laver DR, Roden LD, Ahern GP, Eager KR, Junankar PR, Dulhunty AF.
    J Membr Biol; 1995 Sep 19; 147(1):7-22. PubMed ID: 8531200
    [Abstract] [Full Text] [Related]

  • 13. Ryanodine receptor activity and store-operated Ca2+ entry: Critical regulators of Ca2+ content and function in skeletal muscle.
    Pearce L, Meizoso-Huesca A, Seng C, Lamboley CR, Singh DP, Launikonis BS.
    J Physiol; 2023 Oct 19; 601(19):4183-4202. PubMed ID: 35218018
    [Abstract] [Full Text] [Related]

  • 14. Mice null for calsequestrin 1 exhibit deficits in functional performance and sarcoplasmic reticulum calcium handling.
    Olojo RO, Ziman AP, Hernández-Ochoa EO, Allen PD, Schneider MF, Ward CW.
    PLoS One; 2011 Oct 19; 6(12):e27036. PubMed ID: 22164205
    [Abstract] [Full Text] [Related]

  • 15. Disrupted T-tubular network accounts for asynchronous calcium release in MTM1-deficient skeletal muscle.
    Szentesi P, Dienes B, Kutchukian C, Czirjak T, Buj-Bello A, Jacquemond V, Csernoch L.
    J Physiol; 2023 Jan 19; 601(1):99-121. PubMed ID: 36408764
    [Abstract] [Full Text] [Related]

  • 16. Termination of cardiac Ca2+ sparks: role of intra-SR [Ca2+], release flux, and intra-SR Ca2+ diffusion.
    Zima AV, Picht E, Bers DM, Blatter LA.
    Circ Res; 2008 Oct 10; 103(8):e105-15. PubMed ID: 18787194
    [Abstract] [Full Text] [Related]

  • 17. Evolutionary isolation of ryanodine receptor isoform 1 for muscle-based thermogenesis in mammals.
    Singh DP, Pearce L, Choi RH, Meizoso-Huesca A, Wette SG, Scott JW, Lamboley CR, Murphy RM, Launikonis BS.
    Proc Natl Acad Sci U S A; 2023 Jan 24; 120(4):e2117503120. PubMed ID: 36649401
    [Abstract] [Full Text] [Related]

  • 18. Measurement of RyR permeability reveals a role of calsequestrin in termination of SR Ca(2+) release in skeletal muscle.
    Sztretye M, Yi J, Figueroa L, Zhou J, Royer L, Allen P, Brum G, Ríos E.
    J Gen Physiol; 2011 Aug 24; 138(2):231-47. PubMed ID: 21788611
    [Abstract] [Full Text] [Related]

  • 19. Simulating cardiac Ca2+ release units: effects of RyR cluster size and Ca2+ buffers on diastolic Ca2+ leak.
    Fill M, Gillespie D.
    Pflugers Arch; 2021 Mar 24; 473(3):435-446. PubMed ID: 33608799
    [Abstract] [Full Text] [Related]

  • 20. Mg2+ dependence of halothane-induced Ca2+ release from the sarcoplasmic reticulum in rat skeletal muscle.
    Duke AM, Hopkins PM, Steele DS.
    J Physiol; 2003 Sep 01; 551(Pt 2):447-54. PubMed ID: 12909676
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.