These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


297 related items for PubMed ID: 24984774

  • 1. What was the real contribution of endosymbionts to the eukaryotic nucleus? Insights from photosynthetic eukaryotes.
    Moreira D, Deschamps P.
    Cold Spring Harb Perspect Biol; 2014 Jul 01; 6(7):a016014. PubMed ID: 24984774
    [Abstract] [Full Text] [Related]

  • 2. Chlamydial genes shed light on the evolution of photoautotrophic eukaryotes.
    Becker B, Hoef-Emden K, Melkonian M.
    BMC Evol Biol; 2008 Jul 15; 8():203. PubMed ID: 18627593
    [Abstract] [Full Text] [Related]

  • 3. Re-evaluating the green versus red signal in eukaryotes with secondary plastid of red algal origin.
    Burki F, Flegontov P, Oborník M, Cihlár J, Pain A, Lukes J, Keeling PJ.
    Genome Biol Evol; 2012 Jul 15; 4(6):626-35. PubMed ID: 22593553
    [Abstract] [Full Text] [Related]

  • 4. Genomic footprints of a cryptic plastid endosymbiosis in diatoms.
    Moustafa A, Beszteri B, Maier UG, Bowler C, Valentin K, Bhattacharya D.
    Science; 2009 Jun 26; 324(5935):1724-6. PubMed ID: 19556510
    [Abstract] [Full Text] [Related]

  • 5. Algal genes in the closest relatives of animals.
    Sun G, Yang Z, Ishwar A, Huang J.
    Mol Biol Evol; 2010 Dec 26; 27(12):2879-89. PubMed ID: 20627874
    [Abstract] [Full Text] [Related]

  • 6. After the primary endosymbiosis: an update on the chromalveolate hypothesis and the origins of algae with Chl c.
    Green BR.
    Photosynth Res; 2011 Jan 26; 107(1):103-15. PubMed ID: 20676772
    [Abstract] [Full Text] [Related]

  • 7. Diatom genes originating from red and green algae: Implications for the secondary endosymbiosis models.
    Morozov AA, Galachyants YP.
    Mar Genomics; 2019 Jun 26; 45():72-78. PubMed ID: 30792089
    [Abstract] [Full Text] [Related]

  • 8. The endosymbiotic origin, diversification and fate of plastids.
    Keeling PJ.
    Philos Trans R Soc Lond B Biol Sci; 2010 Mar 12; 365(1541):729-48. PubMed ID: 20124341
    [Abstract] [Full Text] [Related]

  • 9. Endosymbiosis: double-take on plastid origins.
    Archibald JM.
    Curr Biol; 2006 Sep 05; 16(17):R690-2. PubMed ID: 16950094
    [Abstract] [Full Text] [Related]

  • 10. The phylogenetic position of red algae revealed by multiple nuclear genes from mitochondria-containing eukaryotes and an alternative hypothesis on the origin of plastids.
    Nozaki H, Matsuzaki M, Takahara M, Misumi O, Kuroiwa H, Hasegawa M, Shin-i T, Kohara Y, Ogasawara N, Kuroiwa T.
    J Mol Evol; 2003 Apr 05; 56(4):485-97. PubMed ID: 12664168
    [Abstract] [Full Text] [Related]

  • 11. Red and green algal origin of diatom membrane transporters: insights into environmental adaptation and cell evolution.
    Chan CX, Reyes-Prieto A, Bhattacharya D.
    PLoS One; 2011 Apr 05; 6(12):e29138. PubMed ID: 22195008
    [Abstract] [Full Text] [Related]

  • 12. Mosaic origin of the heme biosynthesis pathway in photosynthetic eukaryotes.
    Oborník M, Green BR.
    Mol Biol Evol; 2005 Dec 05; 22(12):2343-53. PubMed ID: 16093570
    [Abstract] [Full Text] [Related]

  • 13. Nuclear genome sequence of the plastid-lacking cryptomonad Goniomonas avonlea provides insights into the evolution of secondary plastids.
    Cenci U, Sibbald SJ, Curtis BA, Kamikawa R, Eme L, Moog D, Henrissat B, Maréchal E, Chabi M, Djemiel C, Roger AJ, Kim E, Archibald JM.
    BMC Biol; 2018 Nov 28; 16(1):137. PubMed ID: 30482201
    [Abstract] [Full Text] [Related]

  • 14. Signal conflicts in the phylogeny of the primary photosynthetic eukaryotes.
    Deschamps P, Moreira D.
    Mol Biol Evol; 2009 Dec 28; 26(12):2745-53. PubMed ID: 19706725
    [Abstract] [Full Text] [Related]

  • 15. A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids.
    Janouskovec J, Horák A, Oborník M, Lukes J, Keeling PJ.
    Proc Natl Acad Sci U S A; 2010 Jun 15; 107(24):10949-54. PubMed ID: 20534454
    [Abstract] [Full Text] [Related]

  • 16. Lateral gene transfer and the evolution of plastid-targeted proteins in the secondary plastid-containing alga Bigelowiella natans.
    Archibald JM, Rogers MB, Toop M, Ishida K, Keeling PJ.
    Proc Natl Acad Sci U S A; 2003 Jun 24; 100(13):7678-83. PubMed ID: 12777624
    [Abstract] [Full Text] [Related]

  • 17. Reevaluating the green contribution to diatom genomes.
    Deschamps P, Moreira D.
    Genome Biol Evol; 2012 Jun 24; 4(7):683-8. PubMed ID: 22684208
    [Abstract] [Full Text] [Related]

  • 18. Protein networks identify novel symbiogenetic genes resulting from plastid endosymbiosis.
    Méheust R, Zelzion E, Bhattacharya D, Lopez P, Bapteste E.
    Proc Natl Acad Sci U S A; 2016 Mar 29; 113(13):3579-84. PubMed ID: 26976593
    [Abstract] [Full Text] [Related]

  • 19. Genomic perspectives on the birth and spread of plastids.
    Archibald JM.
    Proc Natl Acad Sci U S A; 2015 Aug 18; 112(33):10147-53. PubMed ID: 25902528
    [Abstract] [Full Text] [Related]

  • 20. Ancient recruitment by chromists of green algal genes encoding enzymes for carotenoid biosynthesis.
    Frommolt R, Werner S, Paulsen H, Goss R, Wilhelm C, Zauner S, Maier UG, Grossman AR, Bhattacharya D, Lohr M.
    Mol Biol Evol; 2008 Dec 18; 25(12):2653-67. PubMed ID: 18799712
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.