These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


318 related items for PubMed ID: 24985498

  • 1. Growing duckweed for biofuel production: a review.
    Cui W, Cheng JJ.
    Plant Biol (Stuttg); 2015 Jan; 17 Suppl 1():16-23. PubMed ID: 24985498
    [Abstract] [Full Text] [Related]

  • 2. Comparative analysis of duckweed cultivation with sewage water and SH media for production of fuel ethanol.
    Yu C, Sun C, Yu L, Zhu M, Xu H, Zhao J, Ma Y, Zhou G.
    PLoS One; 2014 Jan; 9(12):e115023. PubMed ID: 25517893
    [Abstract] [Full Text] [Related]

  • 3. Duckweed Is a Promising Feedstock of Biofuels: Advantages and Approaches.
    Yang GL.
    Int J Mol Sci; 2022 Dec 03; 23(23):. PubMed ID: 36499555
    [Abstract] [Full Text] [Related]

  • 4. The influence of light intensity and photoperiod on duckweed biomass and starch accumulation for bioethanol production.
    Yin Y, Yu C, Yu L, Zhao J, Sun C, Ma Y, Zhou G.
    Bioresour Technol; 2015 Dec 03; 187():84-90. PubMed ID: 25841186
    [Abstract] [Full Text] [Related]

  • 5. Large-scale screening and characterisation of Lemna aequinoctialis and Spirodela polyrhiza strains for starch production.
    Ma YB, Zhu M, Yu CJ, Wang Y, Liu Y, Li ML, Sun YD, Zhao JS, Zhou GK.
    Plant Biol (Stuttg); 2018 Mar 03; 20(2):357-364. PubMed ID: 29222918
    [Abstract] [Full Text] [Related]

  • 6. Natural variance in salt tolerance and induction of starch accumulation in duckweeds.
    Sree KS, Adelmann K, Garcia C, Lam E, Appenroth KJ.
    Planta; 2015 Jun 03; 241(6):1395-404. PubMed ID: 25693515
    [Abstract] [Full Text] [Related]

  • 7. Positive effects of duckweed polycultures on starch and protein accumulation.
    Li Y, Zhang F, Daroch M, Tang J.
    Biosci Rep; 2016 Oct 03; 36(5):. PubMed ID: 27515418
    [Abstract] [Full Text] [Related]

  • 8. Improving biomass and starch accumulation of bioenergy crop duckweed (Landoltia punctata) by abscisic acid application.
    Liu Y, Chen X, Wang X, Fang Y, Huang M, Guo L, Zhang Y, Zhao H.
    Sci Rep; 2018 Jun 22; 8(1):9544. PubMed ID: 29934519
    [Abstract] [Full Text] [Related]

  • 9. High flavonoid accompanied with high starch accumulation triggered by nutrient starvation in bioenergy crop duckweed (Landoltia punctata).
    Tao X, Fang Y, Huang MJ, Xiao Y, Liu Y, Ma XR, Zhao H.
    BMC Genomics; 2017 Feb 15; 18(1):166. PubMed ID: 28201992
    [Abstract] [Full Text] [Related]

  • 10. Engineering Corynebacterium crenatum to produce higher alcohols for biofuel using hydrolysates of duckweed (Landoltia punctata) as feedstock.
    Su H, Jiang J, Lu Q, Zhao Z, Xie T, Zhao H, Wang M.
    Microb Cell Fact; 2015 Feb 07; 14():16. PubMed ID: 25889648
    [Abstract] [Full Text] [Related]

  • 11. Survey of duckweed diversity in Lake Chao and total fatty acid, triacylglycerol, profiles of representative strains.
    Tang J, Li Y, Ma J, Cheng JJ.
    Plant Biol (Stuttg); 2015 Sep 07; 17(5):1066-72. PubMed ID: 25950142
    [Abstract] [Full Text] [Related]

  • 12. Thermolysis of microalgae and duckweed in a CO₂-swept fixed-bed reactor: bio-oil yield and compositional effects.
    Campanella A, Muncrief R, Harold MP, Griffith DC, Whitton NM, Weber RS.
    Bioresour Technol; 2012 Apr 07; 109():154-62. PubMed ID: 22285294
    [Abstract] [Full Text] [Related]

  • 13. Growing duckweed in swine wastewater for nutrient recovery and biomass production.
    Xu J, Shen G.
    Bioresour Technol; 2011 Jan 07; 102(2):848-53. PubMed ID: 20869239
    [Abstract] [Full Text] [Related]

  • 14. Progress in thermochemical conversion of duckweed and upgrading of the bio-oil: A critical review.
    Djandja OS, Yin L, Wang Z, Guo Y, Zhang X, Duan P.
    Sci Total Environ; 2021 May 15; 769():144660. PubMed ID: 33736270
    [Abstract] [Full Text] [Related]

  • 15. Sulfamethoxazole removal and fuel-feedstock biomass production from wastewater in a phyto-Fenton process using duckweed culture.
    Toyama T, Kobayashi M, Rubiy Atno, Morikawa M, Mori K.
    Chemosphere; 2024 Aug 15; 361():142592. PubMed ID: 38866331
    [Abstract] [Full Text] [Related]

  • 16. Pilot-scale comparison of four duckweed strains from different genera for potential application in nutrient recovery from wastewater and valuable biomass production.
    Zhao Y, Fang Y, Jin Y, Huang J, Bao S, Fu T, He Z, Wang F, Wang M, Zhao H.
    Plant Biol (Stuttg); 2015 Jan 15; 17 Suppl 1():82-90. PubMed ID: 24942851
    [Abstract] [Full Text] [Related]

  • 17. Extremophiles in biofuel synthesis.
    Barnard D, Casanueva A, Tuffin M, Cowan D.
    Environ Technol; 2010 Jan 15; 31(8-9):871-88. PubMed ID: 20662378
    [Abstract] [Full Text] [Related]

  • 18. Biosynthesis of the starch is improved by the supplement of nickel (Ni2+) in duckweed (Landoltia punctata).
    Shao J, Liu Z, Ding Y, Wang J, Li X, Yang Y.
    J Plant Res; 2020 Jul 15; 133(4):587-596. PubMed ID: 32458160
    [Abstract] [Full Text] [Related]

  • 19. Effects of various spectral compositions on micro-polluted water purification and biofuel feedstock production using duckweed.
    Li Q, Yi Z, Yang G, Xu Y, Jin Y, Tan L, Du A, He K, Zhao H, Fang Y.
    Environ Sci Pollut Res Int; 2022 Jul 15; 29(34):52003-52012. PubMed ID: 35257341
    [Abstract] [Full Text] [Related]

  • 20. Using proteomic analysis to investigate uniconazole-induced phytohormone variation and starch accumulation in duckweed (Landoltia punctata).
    Huang M, Fang Y, Liu Y, Jin Y, Sun J, Tao X, Ma X, He K, Zhao H.
    BMC Biotechnol; 2015 Sep 15; 15():81. PubMed ID: 26369558
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.