These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


250 related items for PubMed ID: 24990580

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Forelimb EMG-based trigger to control an electronic spinal bridge to enable hindlimb stepping after a complete spinal cord lesion in rats.
    Gad P, Woodbridge J, Lavrov I, Zhong H, Roy RR, Sarrafzadeh M, Edgerton VR.
    J Neuroeng Rehabil; 2012 Jun 12; 9():38. PubMed ID: 22691460
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. A brain-spine interface alleviating gait deficits after spinal cord injury in primates.
    Capogrosso M, Milekovic T, Borton D, Wagner F, Moraud EM, Mignardot JB, Buse N, Gandar J, Barraud Q, Xing D, Rey E, Duis S, Jianzhong Y, Ko WK, Li Q, Detemple P, Denison T, Micera S, Bezard E, Bloch J, Courtine G.
    Nature; 2016 Nov 10; 539(7628):284-288. PubMed ID: 27830790
    [Abstract] [Full Text] [Related]

  • 5. A brain-machine-muscle interface for restoring hindlimb locomotion after complete spinal transection in rats.
    Alam M, Chen X, Zhang Z, Li Y, He J.
    PLoS One; 2014 Nov 10; 9(8):e103764. PubMed ID: 25084446
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Hindlimb movement in the cat induced by amplitude-modulated stimulation using extra-spinal electrodes.
    Tai C, Wang J, Shen B, Wang X, Roppolo JR, de Groat WC.
    J Neural Eng; 2008 Jun 10; 5(2):111-24. PubMed ID: 18369283
    [Abstract] [Full Text] [Related]

  • 8. A muscle-driven approach to restore stepping with an exoskeleton for individuals with paraplegia.
    Chang SR, Nandor MJ, Li L, Kobetic R, Foglyano KM, Schnellenberger JR, Audu ML, Pinault G, Quinn RD, Triolo RJ.
    J Neuroeng Rehabil; 2017 May 30; 14(1):48. PubMed ID: 28558835
    [Abstract] [Full Text] [Related]

  • 9. Ipsilesional Motor Cortex Plasticity Participates in Spontaneous Hindlimb Recovery after Lateral Hemisection of the Thoracic Spinal Cord in the Rat.
    Brown AR, Martinez M.
    J Neurosci; 2018 Nov 14; 38(46):9977-9988. PubMed ID: 30301755
    [Abstract] [Full Text] [Related]

  • 10. Inducing hindlimb locomotor recovery in adult rat after complete thoracic spinal cord section using repeated treadmill training with perineal stimulation only.
    Alluin O, Delivet-Mongrain H, Rossignol S.
    J Neurophysiol; 2015 Sep 14; 114(3):1931-46. PubMed ID: 26203108
    [Abstract] [Full Text] [Related]

  • 11. Combined motor cortex and spinal cord neuromodulation promotes corticospinal system functional and structural plasticity and motor function after injury.
    Song W, Amer A, Ryan D, Martin JH.
    Exp Neurol; 2016 Mar 14; 277():46-57. PubMed ID: 26708732
    [Abstract] [Full Text] [Related]

  • 12. Spinal Rhythm Generation by Step-Induced Feedback and Transcutaneous Posterior Root Stimulation in Complete Spinal Cord-Injured Individuals.
    Minassian K, Hofstoetter US, Danner SM, Mayr W, Bruce JA, McKay WB, Tansey KE.
    Neurorehabil Neural Repair; 2016 Mar 14; 30(3):233-43. PubMed ID: 26089308
    [Abstract] [Full Text] [Related]

  • 13. Neurochemical excitation of thoracic propriospinal neurons improves hindlimb stepping in adult rats with spinal cord lesions.
    Cowley KC, MacNeil BJ, Chopek JW, Sutherland S, Schmidt BJ.
    Exp Neurol; 2015 Feb 14; 264():174-87. PubMed ID: 25527257
    [Abstract] [Full Text] [Related]

  • 14. Locomotor training maintains normal inhibitory influence on both alpha- and gamma-motoneurons after neonatal spinal cord transection.
    Ichiyama RM, Broman J, Roy RR, Zhong H, Edgerton VR, Havton LA.
    J Neurosci; 2011 Jan 05; 31(1):26-33. PubMed ID: 21209186
    [Abstract] [Full Text] [Related]

  • 15. Plasticity and alterations of trunk motor cortex following spinal cord injury and non-stepping robot and treadmill training.
    Oza CS, Giszter SF.
    Exp Neurol; 2014 Jun 05; 256():57-69. PubMed ID: 24704619
    [Abstract] [Full Text] [Related]

  • 16. Recruitment of spinal motor pools during voluntary movements versus stepping after human spinal cord injury.
    Maegele M, Müller S, Wernig A, Edgerton VR, Harkema SJ.
    J Neurotrauma; 2002 Oct 05; 19(10):1217-29. PubMed ID: 12427330
    [Abstract] [Full Text] [Related]

  • 17. Treadmill training promotes spinal changes leading to locomotor recovery after partial spinal cord injury in cats.
    Martinez M, Delivet-Mongrain H, Rossignol S.
    J Neurophysiol; 2013 Jun 05; 109(12):2909-22. PubMed ID: 23554433
    [Abstract] [Full Text] [Related]

  • 18. Distribution and latency of muscle responses to transcranial magnetic stimulation of motor cortex after spinal cord injury in humans.
    Calancie B, Alexeeva N, Broton JG, Suys S, Hall A, Klose KJ.
    J Neurotrauma; 1999 Jan 05; 16(1):49-67. PubMed ID: 9989466
    [Abstract] [Full Text] [Related]

  • 19. Rostral lumbar segments are the key controllers of hindlimb locomotor rhythmicity in the adult spinal rat.
    Gerasimenko Y, Preston C, Zhong H, Roy RR, Edgerton VR, Shah PK.
    J Neurophysiol; 2019 Aug 01; 122(2):585-600. PubMed ID: 30943092
    [Abstract] [Full Text] [Related]

  • 20. Trunk robot rehabilitation training with active stepping reorganizes and enriches trunk motor cortex representations in spinal transected rats.
    Oza CS, Giszter SF.
    J Neurosci; 2015 May 06; 35(18):7174-89. PubMed ID: 25948267
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.