These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


434 related items for PubMed ID: 24997811

  • 1. Impact on the biomechanics of overground gait of using an 'Echelon' hydraulic ankle-foot device in unilateral trans-tibial and trans-femoral amputees.
    De Asha AR, Munjal R, Kulkarni J, Buckley JG.
    Clin Biomech (Bristol); 2014 Aug; 29(7):728-34. PubMed ID: 24997811
    [Abstract] [Full Text] [Related]

  • 2. Attenuation of centre-of-pressure trajectory fluctuations under the prosthetic foot when using an articulating hydraulic ankle attachment compared to fixed attachment.
    De Asha AR, Johnson L, Munjal R, Kulkarni J, Buckley JG.
    Clin Biomech (Bristol); 2013 Feb; 28(2):218-24. PubMed ID: 23261018
    [Abstract] [Full Text] [Related]

  • 3. Biomechanics of ramp descent in unilateral trans-tibial amputees: Comparison of a microprocessor controlled foot with conventional ankle-foot mechanisms.
    Struchkov V, Buckley JG.
    Clin Biomech (Bristol); 2016 Feb; 32():164-70. PubMed ID: 26689894
    [Abstract] [Full Text] [Related]

  • 4. Walking speed related joint kinetic alterations in trans-tibial amputees: impact of hydraulic 'ankle' damping.
    De Asha AR, Munjal R, Kulkarni J, Buckley JG.
    J Neuroeng Rehabil; 2013 Oct 17; 10():107. PubMed ID: 24134803
    [Abstract] [Full Text] [Related]

  • 5. The effects of walking speed on minimum toe clearance and on the temporal relationship between minimum clearance and peak swing-foot velocity in unilateral trans-tibial amputees.
    De Asha AR, Buckley JG.
    Prosthet Orthot Int; 2015 Apr 17; 39(2):120-5. PubMed ID: 24469428
    [Abstract] [Full Text] [Related]

  • 6. Energy cost of ambulation in trans-tibial amputees using a dynamic-response foot with hydraulic versus rigid 'ankle': insights from body centre of mass dynamics.
    Askew GN, McFarlane LA, Minetti AE, Buckley JG.
    J Neuroeng Rehabil; 2019 Mar 14; 16(1):39. PubMed ID: 30871573
    [Abstract] [Full Text] [Related]

  • 7. Kinematic and biomimetic assessment of a hydraulic ankle/foot in level ground and camber walking.
    Bai X, Ewins D, Crocombe AD, Xu W.
    PLoS One; 2017 Mar 14; 12(7):e0180836. PubMed ID: 28704428
    [Abstract] [Full Text] [Related]

  • 8. The effects of prosthetic ankle stiffness on ankle and knee kinematics, prosthetic limb loading, and net metabolic cost of trans-tibial amputee gait.
    Major MJ, Twiste M, Kenney LP, Howard D.
    Clin Biomech (Bristol); 2014 Jan 14; 29(1):98-104. PubMed ID: 24238976
    [Abstract] [Full Text] [Related]

  • 9. Effects of diabetic peripheral neuropathy on gait in vascular trans-tibial amputees.
    Nakajima H, Yamamoto S, Katsuhira J.
    Clin Biomech (Bristol); 2018 Jul 14; 56():84-89. PubMed ID: 29864596
    [Abstract] [Full Text] [Related]

  • 10. A biomechanical assessment of hydraulic ankle-foot devices with and without micro-processor control during slope ambulation in trans-femoral amputees.
    Bai X, Ewins D, Crocombe AD, Xu W.
    PLoS One; 2018 Jul 14; 13(10):e0205093. PubMed ID: 30289921
    [Abstract] [Full Text] [Related]

  • 11. Benefits of an increased prosthetic ankle range of motion for individuals with a trans-tibial amputation walking with a new prosthetic foot.
    Heitzmann DWW, Salami F, De Asha AR, Block J, Putz C, Wolf SI, Alimusaj M.
    Gait Posture; 2018 Jul 14; 64():174-180. PubMed ID: 29913354
    [Abstract] [Full Text] [Related]

  • 12. Gait termination on a declined surface in trans-femoral amputees: Impact of using microprocessor-controlled limb system.
    Abdulhasan ZM, Scally AJ, Buckley JG.
    Clin Biomech (Bristol); 2018 Aug 14; 57():35-41. PubMed ID: 29908391
    [Abstract] [Full Text] [Related]

  • 13. The effect of foot and ankle prosthetic components on braking and propulsive impulses during transtibial amputee gait.
    Zmitrewicz RJ, Neptune RR, Walden JG, Rogers WE, Bosker GW.
    Arch Phys Med Rehabil; 2006 Oct 14; 87(10):1334-9. PubMed ID: 17023242
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Perceptions and biomechanical effects of varying prosthetic ankle stiffness during uphill walking: A case series.
    Ármannsdóttir AL, Lecomte C, Lemaire E, Brynjólfsson S, Briem K.
    Gait Posture; 2024 Feb 14; 108():354-360. PubMed ID: 38227995
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. A comparison of two prosthetic feet on the multi-joint and multi-plane kinetic gait compensations in individuals with a unilateral trans-tibial amputation.
    Underwood HA, Tokuno CD, Eng JJ.
    Clin Biomech (Bristol); 2004 Jul 14; 19(6):609-16. PubMed ID: 15234485
    [Abstract] [Full Text] [Related]

  • 18. Preliminary investigation of residual limb plantarflexion and dorsiflexion muscle activity during treadmill walking for trans-tibial amputees.
    Silver-Thorn B, Current T, Kuhse B.
    Prosthet Orthot Int; 2012 Dec 14; 36(4):435-42. PubMed ID: 22581661
    [Abstract] [Full Text] [Related]

  • 19. Transfemoral amputee intact limb loading and compensatory gait mechanics during down slope ambulation and the effect of prosthetic knee mechanisms.
    Morgenroth DC, Roland M, Pruziner AL, Czerniecki JM.
    Clin Biomech (Bristol); 2018 Jun 14; 55():65-72. PubMed ID: 29698851
    [Abstract] [Full Text] [Related]

  • 20. Long-distance walking effects on trans-tibial amputees compensatory gait patterns and implications on prosthetic designs and training.
    Yeung LF, Leung AK, Zhang M, Lee WC.
    Gait Posture; 2012 Feb 14; 35(2):328-33. PubMed ID: 22055554
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 22.