These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


145 related items for PubMed ID: 25000262

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Impact of extended maceration and regulated deficit irrigation (RDI) in Cabernet Sauvignon wines: characterization of proanthocyanidin distribution, anthocyanin extraction, and chromatic properties.
    Casassa LF, Larsen RC, Beaver CW, Mireles MS, Keller M, Riley WR, Smithyman R, Harbertson JF.
    J Agric Food Chem; 2013 Jul 03; 61(26):6446-57. PubMed ID: 23789791
    [Abstract] [Full Text] [Related]

  • 5. Controlled water deficit during ripening affects proanthocyanidin synthesis, concentration and composition in Cabernet Sauvignon grape skins.
    Cáceres-Mella A, Talaverano MI, Villalobos-González L, Ribalta-Pizarro C, Pastenes C.
    Plant Physiol Biochem; 2017 Aug 03; 117():34-41. PubMed ID: 28587991
    [Abstract] [Full Text] [Related]

  • 6. Effect of irrigation regime on perceived astringency and proanthocyanidin composition of skins and seeds of Vitis vinifera L. cv. Syrah grapes under semiarid conditions.
    Kyraleou M, Kotseridis Y, Koundouras S, Chira K, Teissedre PL, Kallithraka S.
    Food Chem; 2016 Jul 15; 203():292-300. PubMed ID: 26948617
    [Abstract] [Full Text] [Related]

  • 7. Proanthocyanidin synthesis and expression of genes encoding leucoanthocyanidin reductase and anthocyanidin reductase in developing grape berries and grapevine leaves.
    Bogs J, Downey MO, Harvey JS, Ashton AR, Tanner GJ, Robinson SP.
    Plant Physiol; 2005 Oct 15; 139(2):652-63. PubMed ID: 16169968
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Effect of the timing of water deficit on the must amino acid profile of Tempranillo grapes grown under the semiarid conditions of SW Spain.
    Valdés ME, Talaverano MI, Moreno D, Prieto MH, Mancha LA, Uriarte D, Vilanova M.
    Food Chem; 2019 Sep 15; 292():24-31. PubMed ID: 31054671
    [Abstract] [Full Text] [Related]

  • 17. Identification and functional characterization of cDNAs coding for hydroxybenzoate/hydroxycinnamate glucosyltransferases co-expressed with genes related to proanthocyanidin biosynthesis.
    Khater F, Fournand D, Vialet S, Meudec E, Cheynier V, Terrier N.
    J Exp Bot; 2012 Feb 15; 63(3):1201-14. PubMed ID: 22090445
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Modulation of the Berry Skin Transcriptome of cv. Tempranillo Induced by Water Stress Levels.
    Carvalho LC, Ramos MJN, Faísca-Silva D, Marreiros P, Fernandes JC, Egipto R, Lopes CM, Amâncio S.
    Plants (Basel); 2023 Apr 26; 12(9):. PubMed ID: 37176836
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.