These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
327 related items for PubMed ID: 25001405
1. Exciton-dominated optical response of ultra-narrow graphene nanoribbons. Denk R, Hohage M, Zeppenfeld P, Cai J, Pignedoli CA, Söde H, Fasel R, Feng X, Müllen K, Wang S, Prezzi D, Ferretti A, Ruini A, Molinari E, Ruffieux P. Nat Commun; 2014 Jul 08; 5():4253. PubMed ID: 25001405 [Abstract] [Full Text] [Related]
2. On-Surface Synthesis and Characterization of 9-Atom Wide Armchair Graphene Nanoribbons. Talirz L, Söde H, Dumslaff T, Wang S, Sanchez-Valencia JR, Liu J, Shinde P, Pignedoli CA, Liang L, Meunier V, Plumb NC, Shi M, Feng X, Narita A, Müllen K, Fasel R, Ruffieux P. ACS Nano; 2017 Feb 28; 11(2):1380-1388. PubMed ID: 28129507 [Abstract] [Full Text] [Related]
3. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional. Barone V, Hod O, Peralta JE, Scuseria GE. Acc Chem Res; 2011 Apr 19; 44(4):269-79. PubMed ID: 21388164 [Abstract] [Full Text] [Related]
5. Excitonic properties of hydrogen saturation-edged armchair graphene nanoribbons. Wang M, Li CM. Nanoscale; 2011 May 22; 3(5):2324-8. PubMed ID: 21503364 [Abstract] [Full Text] [Related]
6. Electronic structure of atomically precise graphene nanoribbons. Ruffieux P, Cai J, Plumb NC, Patthey L, Prezzi D, Ferretti A, Molinari E, Feng X, Müllen K, Pignedoli CA, Fasel R. ACS Nano; 2012 Aug 28; 6(8):6930-5. PubMed ID: 22853456 [Abstract] [Full Text] [Related]
7. Exciton-exciton annihilation and biexciton stimulated emission in graphene nanoribbons. Soavi G, Dal Conte S, Manzoni C, Viola D, Narita A, Hu Y, Feng X, Hohenester U, Molinari E, Prezzi D, Müllen K, Cerullo G. Nat Commun; 2016 Mar 17; 7():11010. PubMed ID: 26984281 [Abstract] [Full Text] [Related]
8. Probing optical excitations in chevron-like armchair graphene nanoribbons. Denk R, Lodi-Rizzini A, Wang S, Hohage M, Zeppenfeld P, Cai J, Fasel R, Ruffieux P, Berger RFJ, Chen Z, Narita A, Feng X, Müllen K, Biagi R, De Renzi V, Prezzi D, Ruini A, Ferretti A. Nanoscale; 2017 Nov 30; 9(46):18326-18333. PubMed ID: 29143040 [Abstract] [Full Text] [Related]
9. Optical and electronic properties of graphene nanoribbons upon adsorption of ligand-protected aluminum clusters. Gomes da Rocha C, Clayborne PA, Koskinen P, Häkkinen H. Phys Chem Chem Phys; 2014 Feb 28; 16(8):3558-65. PubMed ID: 24413380 [Abstract] [Full Text] [Related]
10. Large-scale solution synthesis of narrow graphene nanoribbons. Vo TH, Shekhirev M, Kunkel DA, Morton MD, Berglund E, Kong L, Wilson PM, Dowben PA, Enders A, Sinitskii A. Nat Commun; 2014 Feb 28; 5():3189. PubMed ID: 24510014 [Abstract] [Full Text] [Related]
11. Plasmon Modes of Graphene Nanoribbons with Periodic Planar Arrangements. Vacacela Gomez C, Pisarra M, Gravina M, Pitarke JM, Sindona A. Phys Rev Lett; 2016 Sep 09; 117(11):116801. PubMed ID: 27661709 [Abstract] [Full Text] [Related]
12. Ultra-Narrow Low-Bandgap Graphene Nanoribbons from Bromoperylenes-Synthesis and Terahertz-Spectroscopy. Jänsch D, Ivanov I, Zagranyarski Y, Duznovic I, Baumgarten M, Turchinovich D, Li C, Bonn M, Müllen K. Chemistry; 2017 Apr 06; 23(20):4870-4875. PubMed ID: 28318065 [Abstract] [Full Text] [Related]
13. Exciton and phonon dynamics in highly aligned 7-atom wide armchair graphene nanoribbons as seen by time-resolved spontaneous Raman scattering. Zhu J, German R, Senkovskiy BV, Haberer D, Fischer FR, Grüneis A, van Loosdrecht PHM. Nanoscale; 2018 Sep 27; 10(37):17975-17982. PubMed ID: 30226260 [Abstract] [Full Text] [Related]
14. Spin polarized conductance in hybrid graphene nanoribbons using 5-7 defects. Botello-Méndez AR, Cruz-Silva E, López-Urías F, Sumpter BG, Meunier V, Terrones M, Terrones H. ACS Nano; 2009 Nov 24; 3(11):3606-12. PubMed ID: 19863086 [Abstract] [Full Text] [Related]
15. Quenching of local magnetic moment in oxygen adsorbed graphene nanoribbons. Veiga RG, Miwa RH, Srivastava GP. J Chem Phys; 2008 May 28; 128(20):201101. PubMed ID: 18513000 [Abstract] [Full Text] [Related]
16. Optical Imaging and Spectroscopy of Atomically Precise Armchair Graphene Nanoribbons. Zhao S, Barin GB, Cao T, Overbeck J, Darawish R, Lyu T, Drapcho S, Wang S, Dumslaff T, Narita A, Calame M, Müllen K, Louie SG, Ruffieux P, Fasel R, Wang F. Nano Lett; 2020 Feb 12; 20(2):1124-1130. PubMed ID: 31916444 [Abstract] [Full Text] [Related]
17. Ultra-narrow metallic armchair graphene nanoribbons. Kimouche A, Ervasti MM, Drost R, Halonen S, Harju A, Joensuu PM, Sainio J, Liljeroth P. Nat Commun; 2015 Dec 14; 6():10177. PubMed ID: 26658960 [Abstract] [Full Text] [Related]
18. Seed-Initiated Anisotropic Growth of Unidirectional Armchair Graphene Nanoribbon Arrays on Germanium. Way AJ, Jacobberger RM, Arnold MS. Nano Lett; 2018 Feb 14; 18(2):898-906. PubMed ID: 29382200 [Abstract] [Full Text] [Related]
19. Curvature effects on electronic properties of armchair graphene nanoribbons without passivation. Chang SL, Wu BR, Yang PH, Lin MF. Phys Chem Chem Phys; 2012 Dec 21; 14(47):16409-14. PubMed ID: 23132378 [Abstract] [Full Text] [Related]
20. Tip Growth of Quasi-Metallic Bilayer Graphene Nanoribbons with Armchair Chirality. Lou S, Lyu B, Chen J, Zhou X, Jiang W, Qiu L, Shen P, Ma S, Zhang Z, Xie Y, Wu Z, Chen Y, Xu K, Liang Q, Watanabe K, Taniguchi T, Xian L, Zhang G, Ouyang W, Ding F, Shi Z. Nano Lett; 2024 Jan 10; 24(1):156-164. PubMed ID: 38147652 [Abstract] [Full Text] [Related] Page: [Next] [New Search]