These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


252 related items for PubMed ID: 25002474

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Involvement of DEAD-box proteins in group I and group II intron splicing. Biochemical characterization of Mss116p, ATP hydrolysis-dependent and -independent mechanisms, and general RNA chaperone activity.
    Halls C, Mohr S, Del Campo M, Yang Q, Jankowsky E, Lambowitz AM.
    J Mol Biol; 2007 Jan 19; 365(3):835-55. PubMed ID: 17081564
    [Abstract] [Full Text] [Related]

  • 4. The DEAD-Box Protein CYT-19 Uses Arginine Residues in Its C-Tail To Tether RNA Substrates.
    Busa VF, Rector MJ, Russell R.
    Biochemistry; 2017 Jul 18; 56(28):3571-3578. PubMed ID: 28650145
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Probing the mechanisms of DEAD-box proteins as general RNA chaperones: the C-terminal domain of CYT-19 mediates general recognition of RNA.
    Grohman JK, Del Campo M, Bhaskaran H, Tijerina P, Lambowitz AM, Russell R.
    Biochemistry; 2007 Mar 20; 46(11):3013-22. PubMed ID: 17311413
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Kinetic redistribution of native and misfolded RNAs by a DEAD-box chaperone.
    Bhaskaran H, Russell R.
    Nature; 2007 Oct 25; 449(7165):1014-8. PubMed ID: 17960235
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. ATP-dependent roles of the DEAD-box protein Mss116p in group II intron splicing in vitro and in vivo.
    Potratz JP, Del Campo M, Wolf RZ, Lambowitz AM, Russell R.
    J Mol Biol; 2011 Aug 19; 411(3):661-79. PubMed ID: 21679717
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Protein-facilitated folding of group II intron ribozymes.
    Fedorova O, Solem A, Pyle AM.
    J Mol Biol; 2010 Apr 02; 397(3):799-813. PubMed ID: 20138894
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Solution structures of DEAD-box RNA chaperones reveal conformational changes and nucleic acid tethering by a basic tail.
    Mallam AL, Jarmoskaite I, Tijerina P, Del Campo M, Seifert S, Guo L, Russell R, Lambowitz AM.
    Proc Natl Acad Sci U S A; 2011 Jul 26; 108(30):12254-9. PubMed ID: 21746911
    [Abstract] [Full Text] [Related]

  • 20. Iterative annealing mechanism explains the functions of the GroEL and RNA chaperones.
    Thirumalai D, Lorimer GH, Hyeon C.
    Protein Sci; 2020 Feb 26; 29(2):360-377. PubMed ID: 31800116
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.