These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
518 related items for PubMed ID: 25009301
1. Phytochrome A antagonizes PHYTOCHROME INTERACTING FACTOR 1 to prevent over-activation of photomorphogenesis. Krzymuski M, Cerdán PD, Zhu L, Vinh A, Chory J, Huq E, Casal JJ. Mol Plant; 2014 Sep; 7(9):1415-1428. PubMed ID: 25009301 [Abstract] [Full Text] [Related]
3. Light-induced phosphorylation and degradation of the negative regulator PHYTOCHROME-INTERACTING FACTOR1 from Arabidopsis depend upon its direct physical interactions with photoactivated phytochromes. Shen H, Zhu L, Castillon A, Majee M, Downie B, Huq E. Plant Cell; 2008 Jun; 20(6):1586-602. PubMed ID: 18539749 [Abstract] [Full Text] [Related]
4. Synergistic and Antagonistic Action of Phytochrome (Phy) A and PhyB during Seedling De-Etiolation in Arabidopsis thaliana. Su L, Hou P, Song M, Zheng X, Guo L, Xiao Y, Yan L, Li W, Yang J. Int J Mol Sci; 2015 May 28; 16(6):12199-212. PubMed ID: 26030677 [Abstract] [Full Text] [Related]
5. phyA dominates in transduction of red-light signals to rapidly responding genes at the initiation of Arabidopsis seedling de-etiolation. Tepperman JM, Hwang YS, Quail PH. Plant J; 2006 Dec 28; 48(5):728-42. PubMed ID: 17076805 [Abstract] [Full Text] [Related]
6. Phytochrome interacting factors 4 and 5 redundantly limit seedling de-etiolation in continuous far-red light. Lorrain S, Trevisan M, Pradervand S, Fankhauser C. Plant J; 2009 Nov 28; 60(3):449-61. PubMed ID: 19619162 [Abstract] [Full Text] [Related]
7. TOPP4 Regulates the Stability of PHYTOCHROME INTERACTING FACTOR5 during Photomorphogenesis in Arabidopsis. Yue J, Qin Q, Meng S, Jing H, Gou X, Li J, Hou S. Plant Physiol; 2016 Mar 28; 170(3):1381-97. PubMed ID: 26704640 [Abstract] [Full Text] [Related]
8. Characterization of photomorphogenic responses and signaling cascades controlled by phytochrome-A expressed in different tissues. Kirchenbauer D, Viczián A, Ádám É, Hegedűs Z, Klose C, Leppert M, Hiltbrunner A, Kircher S, Schäfer E, Nagy F. New Phytol; 2016 Jul 28; 211(2):584-98. PubMed ID: 27027866 [Abstract] [Full Text] [Related]
9. Isolation and characterization of phyC mutants in Arabidopsis reveals complex crosstalk between phytochrome signaling pathways. Monte E, Alonso JM, Ecker JR, Zhang Y, Li X, Young J, Austin-Phillips S, Quail PH. Plant Cell; 2003 Sep 28; 15(9):1962-80. PubMed ID: 12953104 [Abstract] [Full Text] [Related]
10. Phytochrome induces rapid PIF5 phosphorylation and degradation in response to red-light activation. Shen Y, Khanna R, Carle CM, Quail PH. Plant Physiol; 2007 Nov 28; 145(3):1043-51. PubMed ID: 17827270 [Abstract] [Full Text] [Related]
14. A rice phytochrome A in Arabidopsis: The Role of the N-terminus under red and far-red light. Kneissl J, Shinomura T, Furuya M, Bolle C. Mol Plant; 2008 Jan 28; 1(1):84-102. PubMed ID: 20031917 [Abstract] [Full Text] [Related]
19. Both PHYTOCHROME RAPIDLY REGULATED1 (PAR1) and PAR2 promote seedling photomorphogenesis in multiple light signaling pathways. Zhou P, Song M, Yang Q, Su L, Hou P, Guo L, Zheng X, Xi Y, Meng F, Xiao Y, Yang L, Yang J. Plant Physiol; 2014 Feb 28; 164(2):841-52. PubMed ID: 24335334 [Abstract] [Full Text] [Related]