These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
254 related items for PubMed ID: 25016298
1. Chelating polymer modified P84 nanofiltration (NF) hollow fiber membranes for high efficient heavy metal removal. Gao J, Sun SP, Zhu WP, Chung TS. Water Res; 2014 Oct 15; 63():252-61. PubMed ID: 25016298 [Abstract] [Full Text] [Related]
2. Hyperbranched polyethyleneimine induced cross-linking of polyamide-imide nanofiltration hollow fiber membranes for effective removal of ciprofloxacin. Sun SP, Hatton TA, Chung TS. Environ Sci Technol; 2011 May 01; 45(9):4003-9. PubMed ID: 21456576 [Abstract] [Full Text] [Related]
3. Novel nanofiltration membranes consisting of a sulfonated pentablock copolymer rejection layer for heavy metal removal. Thong Z, Han G, Cui Y, Gao J, Chung TS, Chan SY, Wei S. Environ Sci Technol; 2014 Dec 02; 48(23):13880-7. PubMed ID: 25369240 [Abstract] [Full Text] [Related]
4. Anti-organic fouling and anti-biofouling poly(piperazineamide) thin film nanocomposite membranes for low pressure removal of heavy metal ions. Bera A, Trivedi JS, Kumar SB, Chandel AKS, Haldar S, Jewrajka SK. J Hazard Mater; 2018 Feb 05; 343():86-97. PubMed ID: 28946135 [Abstract] [Full Text] [Related]
5. Metal ions removal from wastewater or washing water from contaminated soil by ultrafiltration-complexation. Molinari R, Gallo S, Argurio P. Water Res; 2004 Feb 05; 38(3):593-600. PubMed ID: 14723928 [Abstract] [Full Text] [Related]
6. Improvement of heavy metal separation performance by positively charged small-sized graphene oxide membrane. Zheng B, Jia S, Tian Y. Environ Technol; 2024 May 05; 45(13):2471-2485. PubMed ID: 36730831 [Abstract] [Full Text] [Related]
7. Removal of chromium ions from aqueous solutions by polymer-enhanced ultrafiltration. Aroua MK, Zuki FM, Sulaiman NM. J Hazard Mater; 2007 Aug 25; 147(3):752-8. PubMed ID: 17339078 [Abstract] [Full Text] [Related]
8. High-performance cellulose acetate/polysulfone blend ultrafiltration membranes for removal of heavy metals from water. Moradihamedani P, Abdullah AH. Water Sci Technol; 2017 May 25; 75(10):2422-2433. PubMed ID: 28541950 [Abstract] [Full Text] [Related]
9. Removal of Cu(II) in water by polymer enhanced ultrafiltration: Influence of polymer nature and pH. Kochkodan OD, Kochkodan VM, Sharma VK. J Environ Sci Health A Tox Hazard Subst Environ Eng; 2018 Jan 02; 53(1):33-38. PubMed ID: 29053931 [Abstract] [Full Text] [Related]
10. Separation of macromolecular proteins and rejection of toxic heavy metal ions by PEI/cSMM blend UF membranes. Kanagaraj P, Nagendran A, Rana D, Matsuura T, Neelakandan S. Int J Biol Macromol; 2015 Jan 02; 72():223-9. PubMed ID: 25159885 [Abstract] [Full Text] [Related]
11. Removal of manganese from water using combined chelation/membrane separation systems. Han SC, Choo KH, Choi SJ, Benjamin MM. Water Sci Technol; 2005 Jan 02; 51(6-7):349-55. PubMed ID: 16003996 [Abstract] [Full Text] [Related]
12. Biocompatible Fe3O4@SiO2-NH2 nanocomposite as a green nanofiller embedded in PES-nanofiltration membrane matrix for salts, heavy metal ion and dye removal: Long-term operation and reusability tests. Kamari S, Shahbazi A. Chemosphere; 2020 Mar 02; 243():125282. PubMed ID: 31734593 [Abstract] [Full Text] [Related]
13. Effective removal of heavy metal ions Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by polymer-modified magnetic nanoparticles. Ge F, Li MM, Ye H, Zhao BX. J Hazard Mater; 2012 Apr 15; 211-212():366-72. PubMed ID: 22209322 [Abstract] [Full Text] [Related]
14. Hybrid method integrating adsorption and chemical precipitation of heavy metal ions on polymeric fiber surfaces for highly efficient water purification. Ko YG. Chemosphere; 2024 Sep 15; 363():142909. PubMed ID: 39033862 [Abstract] [Full Text] [Related]
15. Nanometric Graphene Oxide Framework Membranes with Enhanced Heavy Metal Removal via Nanofiltration. Zhang Y, Zhang S, Chung TS. Environ Sci Technol; 2015 Aug 18; 49(16):10235-42. PubMed ID: 26197200 [Abstract] [Full Text] [Related]
16. Chelating fibers prepared with a wet spinning technique using a mixture of a viscose solution and a polymer ligand for the separation of metal ions in an aqueous solution. Kagaya S, Miyazaki H, Inoue Y, Kato T, Yanai H, Kamichatani W, Kajiwara T, Saito M, Tohda K. J Hazard Mater; 2012 Feb 15; 203-204():370-3. PubMed ID: 22209589 [Abstract] [Full Text] [Related]
17. Effect of surface modification of microfiltration membrane on capture of toxic heavy metal ions. Madaeni SS, Heidary F. Environ Technol; 2012 Feb 15; 33(4-6):393-9. PubMed ID: 22629610 [Abstract] [Full Text] [Related]
19. Study on the treatment of wastewater containing mercury by macromolecular heavy metal flocculant mercaptoacetyl polyethyleneimine. Min X, Qing C, Jinjin C. Water Environ Res; 2010 Feb 15; 82(9):790-6. PubMed ID: 20942334 [Abstract] [Full Text] [Related]
20. Improved performance of a chitosan-based adsorbent for the sequestration of some transition metals. Navarro RR, Tatsumi K. Water Sci Technol; 2001 Feb 15; 43(11):9-16. PubMed ID: 11443991 [Abstract] [Full Text] [Related] Page: [Next] [New Search]