These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


305 related items for PubMed ID: 25027629

  • 21. Comparative mapping of quantitative trait loci involved in heterosis for seedling and yield traits in oilseed rape (Brassica napus L.).
    Basunanda P, Radoev M, Ecke W, Friedt W, Becker HC, Snowdon RJ.
    Theor Appl Genet; 2010 Jan; 120(2):271-81. PubMed ID: 19707740
    [Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. II. Grain yield components.
    Luo LJ, Li ZK, Mei HW, Shu QY, Tabien R, Zhong DB, Ying CS, Stansel JW, Khush GS, Paterson AH.
    Genetics; 2001 Aug; 158(4):1755-71. PubMed ID: 11514460
    [Abstract] [Full Text] [Related]

  • 24. Assembly of yield heterosis of an elite rice hybrid is promising by manipulating dominant quantitative trait loci.
    Shen G, Hu W, Wang X, Zhou X, Han Z, Sherif A, Ayaad M, Xing Y.
    J Integr Plant Biol; 2022 Mar; 64(3):688-701. PubMed ID: 34995015
    [Abstract] [Full Text] [Related]

  • 25. Dominance, overdominance and epistasis condition the heterosis in two heterotic rice hybrids.
    Li L, Lu K, Chen Z, Mu T, Hu Z, Li X.
    Genetics; 2008 Nov; 180(3):1725-42. PubMed ID: 18791236
    [Abstract] [Full Text] [Related]

  • 26. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid.
    Hua J, Xing Y, Wu W, Xu C, Sun X, Yu S, Zhang Q.
    Proc Natl Acad Sci U S A; 2003 Mar 04; 100(5):2574-9. PubMed ID: 12604771
    [Abstract] [Full Text] [Related]

  • 27. Dissimilar Manifestation of Heterosis in Superhybrid Rice at Early-Tillering Stage under Nutrient-Deficient and Nutrient-Sufficient Condition.
    Gu L, Wu Y, Jiang M, Si W, Zhang X, Tian D, Yang S.
    Plant Physiol; 2016 Oct 04; 172(2):1142-1153. PubMed ID: 27540108
    [Abstract] [Full Text] [Related]

  • 28. Dominance and epistasis are the main contributors to heterosis for plant height in rice.
    Shen G, Zhan W, Chen H, Xing Y.
    Plant Sci; 2014 Feb 04; 215-216():11-8. PubMed ID: 24388510
    [Abstract] [Full Text] [Related]

  • 29. Genomic and epigenetic insights into the molecular bases of heterosis.
    Chen ZJ.
    Nat Rev Genet; 2013 Jul 04; 14(7):471-82. PubMed ID: 23752794
    [Abstract] [Full Text] [Related]

  • 30. The role of epigenetics in hybrid vigour.
    Groszmann M, Greaves IK, Fujimoto R, Peacock WJ, Dennis ES.
    Trends Genet; 2013 Dec 04; 29(12):684-90. PubMed ID: 23953922
    [Abstract] [Full Text] [Related]

  • 31. Genetic basis of heterosis for yield and yield components explored by QTL mapping across four genetic populations in upland cotton.
    Li C, Zhao T, Yu H, Li C, Deng X, Dong Y, Zhang F, Zhang Y, Mei L, Chen J, Zhu S.
    BMC Genomics; 2018 Dec 12; 19(1):910. PubMed ID: 30541432
    [Abstract] [Full Text] [Related]

  • 32. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP, Tran LS.
    Curr Genomics; 2016 Aug 12; 17(4):295-6. PubMed ID: 27499678
    [Abstract] [Full Text] [Related]

  • 33. Molecular dissection of heterosis in cereal roots and their rhizosphere.
    Baldauf JA, Hochholdinger F.
    Theor Appl Genet; 2023 Jul 20; 136(8):173. PubMed ID: 37474870
    [Abstract] [Full Text] [Related]

  • 34. The genetic basis of heterosis: multiparental quantitative trait loci mapping reveals contrasted levels of apparent overdominance among traits of agronomical interest in maize (Zea mays L.).
    Larièpe A, Mangin B, Jasson S, Combes V, Dumas F, Jamin P, Lariagon C, Jolivot D, Madur D, Fiévet J, Gallais A, Dubreuil P, Charcosset A, Moreau L.
    Genetics; 2012 Feb 20; 190(2):795-811. PubMed ID: 22135356
    [Abstract] [Full Text] [Related]

  • 35. A systematic dissection in oilseed rape provides insights into the genetic architecture and molecular mechanism of yield heterosis.
    Ye J, Liang H, Zhao X, Li N, Song D, Zhan J, Liu J, Wang X, Tu J, Varshney RK, Shi J, Wang H.
    Plant Biotechnol J; 2023 Jul 20; 21(7):1479-1495. PubMed ID: 37170717
    [Abstract] [Full Text] [Related]

  • 36. Mapping heterotic loci for yield and agronomic traits using chromosome segment introgression lines in cotton.
    Guo X, Guo Y, Ma J, Wang F, Sun M, Gui L, Zhou J, Song X, Sun X, Zhang T.
    J Integr Plant Biol; 2013 Aug 20; 55(8):759-74. PubMed ID: 23570369
    [Abstract] [Full Text] [Related]

  • 37. Exploring the molecular basis of heterosis for plant breeding.
    Liu J, Li M, Zhang Q, Wei X, Huang X.
    J Integr Plant Biol; 2020 Mar 20; 62(3):287-298. PubMed ID: 30916464
    [Abstract] [Full Text] [Related]

  • 38. Identification of quantitative trait loci for kernel-related traits and the heterosis for these traits in maize (Zea mays L.).
    Liu Y, Yi Q, Hou X, Hu Y, Li Y, Yu G, Liu H, Zhang J, Huang Y.
    Mol Genet Genomics; 2020 Jan 20; 295(1):121-133. PubMed ID: 31511973
    [Abstract] [Full Text] [Related]

  • 39. From hybrid genomes to heterotic trait output: Challenges and opportunities.
    Liu W, Zhang Y, He H, He G, Deng XW.
    Curr Opin Plant Biol; 2022 Apr 20; 66():102193. PubMed ID: 35219140
    [Abstract] [Full Text] [Related]

  • 40. Parental DNA Methylation States Are Associated with Heterosis in Epigenetic Hybrids.
    Lauss K, Wardenaar R, Oka R, van Hulten MHA, Guryev V, Keurentjes JJB, Stam M, Johannes F.
    Plant Physiol; 2018 Feb 20; 176(2):1627-1645. PubMed ID: 29196538
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 16.