These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
318 related items for PubMed ID: 25036111
1. Systematic molecular dynamics, MM-PBSA, and ab initio approaches to the saquinavir resistance mechanism in HIV-1 PR due to 11 double and multiple mutations. Tzoupis H, Leonis G, Avramopoulos A, Mavromoustakos T, Papadopoulos MG. J Phys Chem B; 2014 Aug 14; 118(32):9538-52. PubMed ID: 25036111 [Abstract] [Full Text] [Related]
2. A Comparative Molecular Dynamics, MM-PBSA and Thermodynamic Integration Study of Saquinavir Complexes with Wild-Type HIV-1 PR and L10I, G48V, L63P, A71V, G73S, V82A and I84V Single Mutants. Tzoupis H, Leonis G, Mavromoustakos T, Papadopoulos MG. J Chem Theory Comput; 2013 Mar 12; 9(3):1754-64. PubMed ID: 26587633 [Abstract] [Full Text] [Related]
3. Insight into analysis of interactions of saquinavir with HIV-1 protease in comparison between the wild-type and G48V and G48V/L90M mutants based on QM and QM/MM calculations. Saen-oon S, Aruksakunwong O, Wittayanarakul K, Sompornpisut P, Hannongbua S. J Mol Graph Model; 2007 Nov 12; 26(4):720-7. PubMed ID: 17543558 [Abstract] [Full Text] [Related]
4. A contribution to the drug resistance mechanism of darunavir, amprenavir, indinavir, and saquinavir complexes with HIV-1 protease due to flap mutation I50V: a systematic MM-PBSA and thermodynamic integration study. Leonis G, Steinbrecher T, Papadopoulos MG. J Chem Inf Model; 2013 Aug 26; 53(8):2141-53. PubMed ID: 23834142 [Abstract] [Full Text] [Related]
5. A major role for a set of non-active site mutations in the development of HIV-1 protease drug resistance. Muzammil S, Ross P, Freire E. Biochemistry; 2003 Jan 28; 42(3):631-8. PubMed ID: 12534275 [Abstract] [Full Text] [Related]
6. Effect of flap mutations on structure of HIV-1 protease and inhibition by saquinavir and darunavir. Liu F, Kovalevsky AY, Tie Y, Ghosh AK, Harrison RW, Weber IT. J Mol Biol; 2008 Aug 01; 381(1):102-15. PubMed ID: 18597780 [Abstract] [Full Text] [Related]
7. Multidrug resistance to HIV-1 protease inhibition requires cooperative coupling between distal mutations. Ohtaka H, Schön A, Freire E. Biochemistry; 2003 Nov 25; 42(46):13659-66. PubMed ID: 14622012 [Abstract] [Full Text] [Related]
8. Structural analysis of an HIV-1 protease I47A mutant resistant to the protease inhibitor lopinavir. Kagan RM, Shenderovich MD, Heseltine PN, Ramnarayan K. Protein Sci; 2005 Jul 25; 14(7):1870-8. PubMed ID: 15937277 [Abstract] [Full Text] [Related]
9. The impact of active site mutations of South African HIV PR on drug resistance: Insight from molecular dynamics simulations, binding free energy and per-residue footprints. Ahmed SM, Maguire GE, Kruger HG, Govender T. Chem Biol Drug Des; 2014 Apr 25; 83(4):472-81. PubMed ID: 24267738 [Abstract] [Full Text] [Related]
10. Unique thermodynamic response of tipranavir to human immunodeficiency virus type 1 protease drug resistance mutations. Muzammil S, Armstrong AA, Kang LW, Jakalian A, Bonneau PR, Schmelmer V, Amzel LM, Freire E. J Virol; 2007 May 25; 81(10):5144-54. PubMed ID: 17360759 [Abstract] [Full Text] [Related]
11. The HIV type 1 protease L10I minor mutation decreases replication capacity and confers resistance to protease inhibitors. Flor-Parra F, Pérez-Pulido AJ, Pachón J, Pérez-Romero P. AIDS Res Hum Retroviruses; 2011 Jan 25; 27(1):65-70. PubMed ID: 21142921 [Abstract] [Full Text] [Related]
12. Interaction of I50V mutant and I50L/A71V double mutant HIV-protease with inhibitor TMC114 (darunavir): molecular dynamics simulation and binding free energy studies. Meher BR, Wang Y. J Phys Chem B; 2012 Feb 16; 116(6):1884-900. PubMed ID: 22239286 [Abstract] [Full Text] [Related]
13. Some insights into mechanism for binding and drug resistance of wild type and I50V V82A and I84V mutations in HIV-1 protease with GRL-98065 inhibitor from molecular dynamic simulations. Hu GD, Zhu T, Zhang SL, Wang D, Zhang QG. Eur J Med Chem; 2010 Jan 16; 45(1):227-35. PubMed ID: 19910081 [Abstract] [Full Text] [Related]
14. Insights into the mechanism of drug resistance: X-ray structure analysis of G48V/C95F tethered HIV-1 protease dimer/saquinavir complex. Prashar V, Bihani SC, Das A, Rao DR, Hosur MV. Biochem Biophys Res Commun; 2010 Jun 11; 396(4):1018-23. PubMed ID: 20471372 [Abstract] [Full Text] [Related]
15. Defective hydrophobic sliding mechanism and active site expansion in HIV-1 protease drug resistant variant Gly48Thr/Leu89Met: mechanisms for the loss of saquinavir binding potency. Goldfarb NE, Ohanessian M, Biswas S, McGee TD, Mahon BP, Ostrov DA, Garcia J, Tang Y, McKenna R, Roitberg A, Dunn BM. Biochemistry; 2015 Jan 20; 54(2):422-33. PubMed ID: 25513833 [Abstract] [Full Text] [Related]
16. Comparing the accumulation of active- and nonactive-site mutations in the HIV-1 protease. Clemente JC, Moose RE, Hemrajani R, Whitford LR, Govindasamy L, Reutzel R, McKenna R, Agbandje-McKenna M, Goodenow MM, Dunn BM. Biochemistry; 2004 Sep 28; 43(38):12141-51. PubMed ID: 15379553 [Abstract] [Full Text] [Related]
17. Atomic resolution crystal structures of HIV-1 protease and mutants V82A and I84V with saquinavir. Tie Y, Kovalevsky AY, Boross P, Wang YF, Ghosh AK, Tozser J, Harrison RW, Weber IT. Proteins; 2007 Apr 01; 67(1):232-42. PubMed ID: 17243183 [Abstract] [Full Text] [Related]
18. Understanding the HIV-1 protease nelfinavir resistance mutation D30N in subtypes B and C through molecular dynamics simulations. Soares RO, Batista PR, Costa MG, Dardenne LE, Pascutti PG, Soares MA. J Mol Graph Model; 2010 Sep 01; 29(2):137-47. PubMed ID: 20541446 [Abstract] [Full Text] [Related]
19. Structural and dynamical properties of different protonated states of mutant HIV-1 protease complexed with the saquinavir inhibitor studied by molecular dynamics simulations. Aruksakunwong O, Wittayanarakul K, Sompornpisut P, Sanghiran V, Parasuk V, Hannongbua S. J Mol Graph Model; 2006 Nov 01; 25(3):324-32. PubMed ID: 16504560 [Abstract] [Full Text] [Related]
20. A Comparative Insight into Amprenavir Resistance of Mutations V32I, G48V, I50V, I54V, and I84V in HIV-1 Protease Based on Thermodynamic Integration and MM-PBSA Methods. Chen J, Wang X, Zhu T, Zhang Q, Zhang JZ. J Chem Inf Model; 2015 Sep 28; 55(9):1903-13. PubMed ID: 26317593 [Abstract] [Full Text] [Related] Page: [Next] [New Search]