These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


318 related items for PubMed ID: 25036111

  • 61.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 62.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 63. Binding of single walled carbon nanotube to WT and mutant HIV-1 proteases: analysis of flap dynamics and binding mechanism.
    Meher BR, Wang Y.
    J Mol Graph Model; 2012 Sep; 38():430-45. PubMed ID: 23142620
    [Abstract] [Full Text] [Related]

  • 64.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 65. Insights into drug resistance of mutations D30N and I50V to HIV-1 protease inhibitor TMC-114: free energy calculation and molecular dynamic simulation.
    Chen J, Zhang S, Liu X, Zhang Q.
    J Mol Model; 2010 Mar; 16(3):459-68. PubMed ID: 19629548
    [Abstract] [Full Text] [Related]

  • 66. Amprenavir complexes with HIV-1 protease and its drug-resistant mutants altering hydrophobic clusters.
    Shen CH, Wang YF, Kovalevsky AY, Harrison RW, Weber IT.
    FEBS J; 2010 Sep; 277(18):3699-714. PubMed ID: 20695887
    [Abstract] [Full Text] [Related]

  • 67. Combining mutations in HIV-1 protease to understand mechanisms of resistance.
    Mahalingam B, Boross P, Wang YF, Louis JM, Fischer CC, Tozser J, Harrison RW, Weber IT.
    Proteins; 2002 Jul 01; 48(1):107-16. PubMed ID: 12012342
    [Abstract] [Full Text] [Related]

  • 68.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 69. Emergence of protease inhibitor resistance mutations in human immunodeficiency virus type 1 isolates from patients and rapid screening procedure for their detection.
    Vasudevachari MB, Zhang YM, Imamichi H, Imamichi T, Falloon J, Salzman NP.
    Antimicrob Agents Chemother; 1996 Nov 01; 40(11):2535-41. PubMed ID: 8913459
    [Abstract] [Full Text] [Related]

  • 70. Resistance to HIV protease inhibitors: a comparison of enzyme inhibition and antiviral potency.
    Klabe RM, Bacheler LT, Ala PJ, Erickson-Viitanen S, Meek JL.
    Biochemistry; 1998 Jun 16; 37(24):8735-42. PubMed ID: 9628735
    [Abstract] [Full Text] [Related]

  • 71. Prediction of drug-resistance in HIV-1 subtype C based on protease sequences from ART naive and first-line treatment failures in North India using genotypic and docking analysis.
    Toor JS, Sharma A, Kumar R, Gupta P, Garg P, Arora SK.
    Antiviral Res; 2011 Nov 16; 92(2):213-8. PubMed ID: 21875619
    [Abstract] [Full Text] [Related]

  • 72. Accurate ensemble molecular dynamics binding free energy ranking of multidrug-resistant HIV-1 proteases.
    Sadiq SK, Wright DW, Kenway OA, Coveney PV.
    J Chem Inf Model; 2010 May 24; 50(5):890-905. PubMed ID: 20384328
    [Abstract] [Full Text] [Related]

  • 73. Evolution of primary protease inhibitor resistance mutations during protease inhibitor salvage therapy.
    Kantor R, Fessel WJ, Zolopa AR, Israelski D, Shulman N, Montoya JG, Harbour M, Schapiro JM, Shafer RW.
    Antimicrob Agents Chemother; 2002 Apr 24; 46(4):1086-92. PubMed ID: 11897594
    [Abstract] [Full Text] [Related]

  • 74. Secondary mutations M36I and A71V in the human immunodeficiency virus type 1 protease can provide an advantage for the emergence of the primary mutation D30N.
    Clemente JC, Hemrajani R, Blum LE, Goodenow MM, Dunn BM.
    Biochemistry; 2003 Dec 30; 42(51):15029-35. PubMed ID: 14690411
    [Abstract] [Full Text] [Related]

  • 75. Revealing the binding and drug resistance mechanism of amprenavir, indinavir, ritonavir, and nelfinavir complexed with HIV-1 protease due to double mutations G48T/L89M by molecular dynamics simulations and free energy analyses.
    Wang RG, Zhang HX, Zheng QC.
    Phys Chem Chem Phys; 2020 Feb 26; 22(8):4464-4480. PubMed ID: 32057044
    [Abstract] [Full Text] [Related]

  • 76. Compensatory mutations at the HIV cleavage sites p7/p1 and p1/p6-gag in therapy-naive and therapy-experienced patients.
    Verheyen J, Litau E, Sing T, Däumer M, Balduin M, Oette M, Fätkenheuer G, Rockstroh JK, Schuldenzucker U, Hoffmann D, Pfister H, Kaiser R.
    Antivir Ther; 2006 Feb 26; 11(7):879-87. PubMed ID: 17302250
    [Abstract] [Full Text] [Related]

  • 77. Resistant mechanism against nelfinavir of human immunodeficiency virus type 1 proteases.
    Ode H, Ota M, Neya S, Hata M, Sugiura W, Hoshino T.
    J Phys Chem B; 2005 Jan 13; 109(1):565-74. PubMed ID: 16851048
    [Abstract] [Full Text] [Related]

  • 78. Hydrophobic sliding: a possible mechanism for drug resistance in human immunodeficiency virus type 1 protease.
    Foulkes-Murzycki JE, Scott WR, Schiffer CA.
    Structure; 2007 Feb 13; 15(2):225-33. PubMed ID: 17292840
    [Abstract] [Full Text] [Related]

  • 79. Mutation D30N is not preferentially selected by human immunodeficiency virus type 1 subtype C in the development of resistance to nelfinavir.
    Grossman Z, Paxinos EE, Averbuch D, Maayan S, Parkin NT, Engelhard D, Lorber M, Istomin V, Shaked Y, Mendelson E, Ram D, Petropoulos CJ, Schapiro JM.
    Antimicrob Agents Chemother; 2004 Jun 13; 48(6):2159-65. PubMed ID: 15155216
    [Abstract] [Full Text] [Related]

  • 80. Effectiveness of nonpeptide clinical inhibitor TMC-114 on HIV-1 protease with highly drug resistant mutations D30N, I50V, and L90M.
    Kovalevsky AY, Tie Y, Liu F, Boross PI, Wang YF, Leshchenko S, Ghosh AK, Harrison RW, Weber IT.
    J Med Chem; 2006 Feb 23; 49(4):1379-87. PubMed ID: 16480273
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 16.