These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Arbuscular mycorrhizal fungal diversity associated with Eleocharis obtusa and Panicum capillare growing in an extreme petroleum hydrocarbon-polluted sedimentation basin. de la Providencia IE, Stefani FO, Labridy M, St-Arnaud M, Hijri M. FEMS Microbiol Lett; 2015 Jun; 362(12):fnv081. PubMed ID: 25991810 [Abstract] [Full Text] [Related]
4. Petroleum hydrocarbon contamination, plant identity and arbuscular mycorrhizal fungal (AMF) community determine assemblages of the AMF spore-associated microbes. Iffis B, St-Arnaud M, Hijri M. Environ Microbiol; 2016 Sep; 18(8):2689-704. PubMed ID: 27376781 [Abstract] [Full Text] [Related]
6. Isolation and identification of soil bacteria growing at the expense of arbuscular mycorrhizal fungi. Lecomte J, St-Arnaud M, Hijri M. FEMS Microbiol Lett; 2011 Apr; 317(1):43-51. PubMed ID: 21219415 [Abstract] [Full Text] [Related]
10. Characterisation of microbial communities colonising the hyphal surfaces of arbuscular mycorrhizal fungi. Scheublin TR, Sanders IR, Keel C, van der Meer JR. ISME J; 2010 Jun; 4(6):752-63. PubMed ID: 20147983 [Abstract] [Full Text] [Related]
11. Lotus japonicus Symbiosis Genes Impact Microbial Interactions between Symbionts and Multikingdom Commensal Communities. Thiergart T, Zgadzaj R, Bozsóki Z, Garrido-Oter R, Radutoiu S, Schulze-Lefert P. mBio; 2019 Oct 08; 10(5):. PubMed ID: 31594815 [Abstract] [Full Text] [Related]
12. Assessment of arbuscular mycorrhizal fungal diversity in roots of Solidago gigantea growing in a polluted soil in Northern Italy. Vallino M, Massa N, Lumini E, Bianciotto V, Berta G, Bonfante P. Environ Microbiol; 2006 Jun 08; 8(6):971-83. PubMed ID: 16689718 [Abstract] [Full Text] [Related]
13. Effect of soil salinity and nutrient levels on the community structure of the root-associated bacteria of the facultative halophyte, Tamarix ramosissima, in southwestern United States. Taniguchi T, Imada S, Acharya K, Iwanaga F, Yamanaka N. J Gen Appl Microbiol; 2015 Jun 08; 61(5):193-202. PubMed ID: 26582289 [Abstract] [Full Text] [Related]
14. Spatial soil heterogeneity has a greater effect on symbiotic arbuscular mycorrhizal fungal communities and plant growth than genetic modification with Bacillus thuringiensis toxin genes. Cheeke TE, Schütte UM, Hemmerich CM, Cruzan MB, Rosenstiel TN, Bever JD. Mol Ecol; 2015 May 08; 24(10):2580-93. PubMed ID: 25827202 [Abstract] [Full Text] [Related]
15. Arbuscular mycorrhizal fungi in chronically petroleum-contaminated soils in Mexico and the effects of petroleum hydrocarbons on spore germination. Franco-Ramírez A, Ferrera-Cerrato R, Varela-Fregoso L, Pérez-Moreno J, Alarcón A. J Basic Microbiol; 2007 Oct 08; 47(5):378-83. PubMed ID: 17910101 [Abstract] [Full Text] [Related]
16. Evidence of differences between the communities of arbuscular mycorrhizal fungi colonizing galls and roots of Prunus persica infected by the root-knot nematode Meloidogyne incognita. Alguacil Mdel M, Torrecillas E, Lozano Z, Roldán A. Appl Environ Microbiol; 2011 Dec 08; 77(24):8656-61. PubMed ID: 21984233 [Abstract] [Full Text] [Related]
17. Diversity of the small subunit ribosomal RNA gene of the arbuscular mycorrhizal fungi colonizing Clintonia borealis from a mixed-wood boreal forest. DeBellis T, Widden P. FEMS Microbiol Ecol; 2006 Nov 08; 58(2):225-35. PubMed ID: 17064264 [Abstract] [Full Text] [Related]
19. Prospects for arbuscular mycorrhizal fungi (AMF) to assist in phytoremediation of soil hydrocarbon contaminants. Rajtor M, Piotrowska-Seget Z. Chemosphere; 2016 Nov 08; 162():105-16. PubMed ID: 27487095 [Abstract] [Full Text] [Related]