These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


174 related items for PubMed ID: 25042463

  • 1. A 3D mathematical model to predict spinal joint and hip joint force for trans-tibial amputees with different SACH foot pylon adjustments.
    Yu CH, Hung YC, Lin YH, Chen GX, Wei SH, Huang CH, Chen CS.
    Gait Posture; 2014 Sep; 40(4):545-8. PubMed ID: 25042463
    [Abstract] [Full Text] [Related]

  • 2. Effects of diabetic peripheral neuropathy on gait in vascular trans-tibial amputees.
    Nakajima H, Yamamoto S, Katsuhira J.
    Clin Biomech (Bristol); 2018 Jul; 56():84-89. PubMed ID: 29864596
    [Abstract] [Full Text] [Related]

  • 3. Dynamics of below-knee child amputee gait: SACH foot versus Flex foot.
    Schneider K, Hart T, Zernicke RF, Setoguchi Y, Oppenheim W.
    J Biomech; 1993 Oct; 26(10):1191-204. PubMed ID: 8253824
    [Abstract] [Full Text] [Related]

  • 4. Comparison of the International Committee of the Red Cross foot with the solid ankle cushion heel foot during gait: a randomized double-blind study.
    Turcot K, Sagawa Y, Lacraz A, Lenoir J, Assal M, Armand S.
    Arch Phys Med Rehabil; 2013 Aug; 94(8):1490-7. PubMed ID: 23578592
    [Abstract] [Full Text] [Related]

  • 5. The effects of walking speed on minimum toe clearance and on the temporal relationship between minimum clearance and peak swing-foot velocity in unilateral trans-tibial amputees.
    De Asha AR, Buckley JG.
    Prosthet Orthot Int; 2015 Apr; 39(2):120-5. PubMed ID: 24469428
    [Abstract] [Full Text] [Related]

  • 6. Optimisation of the prescription for trans-tibial (TT) amputees.
    Cortés A, Viosca E, Hoyos JV, Prat J, Sánchez-Lacuesta J.
    Prosthet Orthot Int; 1997 Dec; 21(3):168-74. PubMed ID: 9453087
    [Abstract] [Full Text] [Related]

  • 7. Influence of speed on gait parameters and on symmetry in trans-tibial amputees.
    Isakov E, Burger H, Krajnik J, Gregoric M, Marincek C.
    Prosthet Orthot Int; 1996 Dec; 20(3):153-8. PubMed ID: 8985994
    [Abstract] [Full Text] [Related]

  • 8. Contributions to the understanding of gait control.
    Simonsen EB.
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [Abstract] [Full Text] [Related]

  • 9. Sound side joint contact forces in below knee amputee gait with an ESAR prosthetic foot.
    Karimi MT, Salami F, Esrafilian A, Heitzmann DWW, Alimusaj M, Putz C, Wolf SI.
    Gait Posture; 2017 Oct; 58():246-251. PubMed ID: 28822943
    [Abstract] [Full Text] [Related]

  • 10. Joint moment and muscle power output characteristics of below knee amputees during running: the influence of energy storing prosthetic feet.
    Czerniecki JM, Gitter A, Munro C.
    J Biomech; 1991 Oct; 24(1):63-75. PubMed ID: 2026634
    [Abstract] [Full Text] [Related]

  • 11. Analysis of mechanical and metabolic factors in the gait of congenital below knee amputees. A comparison of the SACH and Seattle feet.
    Colborne GR, Naumann S, Longmuir PE, Berbrayer D.
    Am J Phys Med Rehabil; 1992 Oct; 71(5):272-8. PubMed ID: 1388973
    [Abstract] [Full Text] [Related]

  • 12. Variability of kinetic variables during gait in unilateral transtibial amputees.
    Svoboda Z, Janura M, Cabell L, Elfmark M.
    Prosthet Orthot Int; 2012 Jun; 36(2):225-30. PubMed ID: 22440580
    [Abstract] [Full Text] [Related]

  • 13. The influence of limb alignment on the gait of above-knee amputees.
    Yang L, Solomonidis SE, Spence WD, Paul JP.
    J Biomech; 1991 Jun; 24(11):981-97. PubMed ID: 1761584
    [Abstract] [Full Text] [Related]

  • 14. Elderly unilateral transtibial amputee gait on an inclined walkway: a biomechanical analysis.
    Vickers DR, Palk C, McIntosh AS, Beatty KT.
    Gait Posture; 2008 Apr; 27(3):518-29. PubMed ID: 17707643
    [Abstract] [Full Text] [Related]

  • 15. Biomechanics of ramp descent in unilateral trans-tibial amputees: Comparison of a microprocessor controlled foot with conventional ankle-foot mechanisms.
    Struchkov V, Buckley JG.
    Clin Biomech (Bristol); 2016 Feb; 32():164-70. PubMed ID: 26689894
    [Abstract] [Full Text] [Related]

  • 16. The influence of energy storage and return foot stiffness on walking mechanics and muscle activity in below-knee amputees.
    Fey NP, Klute GK, Neptune RR.
    Clin Biomech (Bristol); 2011 Dec; 26(10):1025-32. PubMed ID: 21777999
    [Abstract] [Full Text] [Related]

  • 17. The effects of laterality on obstacle crossing performance in unilateral trans-tibial amputees.
    De Asha AR, Buckley JG.
    Clin Biomech (Bristol); 2015 May; 30(4):343-6. PubMed ID: 25779690
    [Abstract] [Full Text] [Related]

  • 18. Efficacy of shock-absorbing versus rigid pylons for impact reduction in transtibial amputees based on laboratory, field, and outcome metrics.
    Berge JS, Czerniecki JM, Klute GK.
    J Rehabil Res Dev; 2005 May; 42(6):795-808. PubMed ID: 16680617
    [Abstract] [Full Text] [Related]

  • 19. Biomechanical comparison of the energy-storing capabilities of SACH and Carbon Copy II prosthetic feet during the stance phase of gait in a person with below-knee amputation.
    Barr AE, Siegel KL, Danoff JV, McGarvey CL, Tomasko A, Sable I, Stanhope SJ.
    Phys Ther; 1992 May; 72(5):344-54. PubMed ID: 1631203
    [Abstract] [Full Text] [Related]

  • 20. Running patterns of juveniles wearing SACH and single-axis foot components.
    Brouwer BJ, Allard P, Labelle H.
    Arch Phys Med Rehabil; 1989 Feb; 70(2):128-34. PubMed ID: 2916930
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.