These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


370 related items for PubMed ID: 25042518

  • 1. Lipid tail protrusions mediate the insertion of nanoparticles into model cell membranes.
    Van Lehn RC, Ricci M, Silva PH, Andreozzi P, Reguera J, Voïtchovsky K, Stellacci F, Alexander-Katz A.
    Nat Commun; 2014 Jul 21; 5():4482. PubMed ID: 25042518
    [Abstract] [Full Text] [Related]

  • 2. Pathway for insertion of amphiphilic nanoparticles into defect-free lipid bilayers from atomistic molecular dynamics simulations.
    Van Lehn RC, Alexander-Katz A.
    Soft Matter; 2015 Apr 28; 11(16):3165-75. PubMed ID: 25757187
    [Abstract] [Full Text] [Related]

  • 3. Membrane-embedded nanoparticles induce lipid rearrangements similar to those exhibited by biological membrane proteins.
    Van Lehn RC, Alexander-Katz A.
    J Phys Chem B; 2014 Nov 06; 118(44):12586-98. PubMed ID: 25347475
    [Abstract] [Full Text] [Related]

  • 4. Energy landscape for the insertion of amphiphilic nanoparticles into lipid membranes: A computational study.
    Van Lehn RC, Alexander-Katz A.
    PLoS One; 2019 Nov 06; 14(1):e0209492. PubMed ID: 30625163
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Aromaticity/Bulkiness of Surface Ligands to Promote the Interaction of Anionic Amphiphilic Gold Nanoparticles with Lipid Bilayers.
    Gao J, Zhang O, Ren J, Wu C, Zhao Y.
    Langmuir; 2016 Feb 16; 32(6):1601-10. PubMed ID: 26794292
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. The Role of Temperature and Lipid Charge on Intake/Uptake of Cationic Gold Nanoparticles into Lipid Bilayers.
    Lolicato F, Joly L, Martinez-Seara H, Fragneto G, Scoppola E, Baldelli Bombelli F, Vattulainen I, Akola J, Maccarini M.
    Small; 2019 Jun 16; 15(23):e1805046. PubMed ID: 31012268
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. The interplay between surface-functionalized gold nanoparticles and negatively charged lipid vesicles.
    Quan X, Zhao D, Zhou J.
    Phys Chem Chem Phys; 2021 Oct 27; 23(41):23526-23536. PubMed ID: 34642720
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Molecular dynamics simulation of the evolution of hydrophobic defects in one monolayer of a phosphatidylcholine bilayer: relevance for membrane fusion mechanisms.
    Tieleman DP, Bentz J.
    Biophys J; 2002 Sep 27; 83(3):1501-10. PubMed ID: 12202375
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.