These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
948 related items for PubMed ID: 25043026
1. Visualization of arrestin recruitment by a G-protein-coupled receptor. Shukla AK, Westfield GH, Xiao K, Reis RI, Huang LY, Tripathi-Shukla P, Qian J, Li S, Blanc A, Oleskie AN, Dosey AM, Su M, Liang CR, Gu LL, Shan JM, Chen X, Hanna R, Choi M, Yao XJ, Klink BU, Kahsai AW, Sidhu SS, Koide S, Penczek PA, Kossiakoff AA, Woods VL, Kobilka BK, Skiniotis G, Lefkowitz RJ. Nature; 2014 Aug 14; 512(7513):218-222. PubMed ID: 25043026 [Abstract] [Full Text] [Related]
2. beta-arrestin-dependent, G protein-independent ERK1/2 activation by the beta2 adrenergic receptor. Shenoy SK, Drake MT, Nelson CD, Houtz DA, Xiao K, Madabushi S, Reiter E, Premont RT, Lichtarge O, Lefkowitz RJ. J Biol Chem; 2006 Jan 13; 281(2):1261-73. PubMed ID: 16280323 [Abstract] [Full Text] [Related]
3. Gαs is dispensable for β-arrestin coupling but dictates GRK selectivity and is predominant for gene expression regulation by β2-adrenergic receptor. Burghi V, Paradis JS, Officer A, Adame-Garcia SR, Wu X, Matthees ESF, Barsi-Rhyne B, Ramms DJ, Clubb L, Acosta M, Tamayo P, Bouvier M, Inoue A, von Zastrow M, Hoffmann C, Gutkind JS. J Biol Chem; 2023 Nov 13; 299(11):105293. PubMed ID: 37774973 [Abstract] [Full Text] [Related]
4. G protein-coupled receptor kinases (GRKs) orchestrate biased agonism at the β2-adrenergic receptor. Choi M, Staus DP, Wingler LM, Ahn S, Pani B, Capel WD, Lefkowitz RJ. Sci Signal; 2018 Aug 21; 11(544):. PubMed ID: 30131371 [Abstract] [Full Text] [Related]
8. A central role for beta-arrestins and clathrin-coated vesicle-mediated endocytosis in beta2-adrenergic receptor resensitization. Differential regulation of receptor resensitization in two distinct cell types. Zhang J, Barak LS, Winkler KE, Caron MG, Ferguson SS. J Biol Chem; 1997 Oct 24; 272(43):27005-14. PubMed ID: 9341139 [Abstract] [Full Text] [Related]
9. Receptor/beta-arrestin complex formation and the differential trafficking and resensitization of beta2-adrenergic and angiotensin II type 1A receptors. Anborgh PH, Seachrist JL, Dale LB, Ferguson SS. Mol Endocrinol; 2000 Dec 24; 14(12):2040-53. PubMed ID: 11117533 [Abstract] [Full Text] [Related]
10. Beta-arrestin acts as a clathrin adaptor in endocytosis of the beta2-adrenergic receptor. Goodman OB, Krupnick JG, Santini F, Gurevich VV, Penn RB, Gagnon AW, Keen JH, Benovic JL. Nature; 1996 Oct 03; 383(6599):447-50. PubMed ID: 8837779 [Abstract] [Full Text] [Related]
11. Sortase ligation enables homogeneous GPCR phosphorylation to reveal diversity in β-arrestin coupling. Staus DP, Wingler LM, Choi M, Pani B, Manglik A, Kruse AC, Lefkowitz RJ. Proc Natl Acad Sci U S A; 2018 Apr 10; 115(15):3834-3839. PubMed ID: 29581292 [Abstract] [Full Text] [Related]
12. Synergistic regulation of beta2-adrenergic receptor sequestration: intracellular complement of beta-adrenergic receptor kinase and beta-arrestin determine kinetics of internalization. Ménard L, Ferguson SS, Zhang J, Lin FT, Lefkowitz RJ, Caron MG, Barak LS. Mol Pharmacol; 1997 May 10; 51(5):800-8. PubMed ID: 9145918 [Abstract] [Full Text] [Related]
13. β-Arrestin biosensors reveal a rapid, receptor-dependent activation/deactivation cycle. Nuber S, Zabel U, Lorenz K, Nuber A, Milligan G, Tobin AB, Lohse MJ, Hoffmann C. Nature; 2016 Mar 31; 531(7596):661-4. PubMed ID: 27007855 [Abstract] [Full Text] [Related]
14. β-arrestins and G protein-coupled receptor trafficking. Tian X, Kang DS, Benovic JL. Handb Exp Pharmacol; 2014 Mar 31; 219():173-86. PubMed ID: 24292830 [Abstract] [Full Text] [Related]
15. Unraveling G protein-coupled receptor endocytosis pathways using real-time monitoring of agonist-promoted interaction between beta-arrestins and AP-2. Hamdan FF, Rochdi MD, Breton B, Fessart D, Michaud DE, Charest PG, Laporte SA, Bouvier M. J Biol Chem; 2007 Oct 05; 282(40):29089-100. PubMed ID: 17675294 [Abstract] [Full Text] [Related]
16. Structure of an endosomal signaling GPCR-G protein-β-arrestin megacomplex. Nguyen AH, Thomsen ARB, Cahill TJ, Huang R, Huang LY, Marcink T, Clarke OB, Heissel S, Masoudi A, Ben-Hail D, Samaan F, Dandey VP, Tan YZ, Hong C, Mahoney JP, Triest S, Little J, Chen X, Sunahara R, Steyaert J, Molina H, Yu Z, des Georges A, Lefkowitz RJ. Nat Struct Mol Biol; 2019 Dec 05; 26(12):1123-1131. PubMed ID: 31740855 [Abstract] [Full Text] [Related]
17. Scanning peptide array analyses identify overlapping binding sites for the signalling scaffold proteins, beta-arrestin and RACK1, in cAMP-specific phosphodiesterase PDE4D5. Bolger GB, Baillie GS, Li X, Lynch MJ, Herzyk P, Mohamed A, Mitchell LH, McCahill A, Hundsrucker C, Klussmann E, Adams DR, Houslay MD. Biochem J; 2006 Aug 15; 398(1):23-36. PubMed ID: 16689683 [Abstract] [Full Text] [Related]
18. Molecular mechanisms of G protein-coupled receptor desensitization and resensitization. Ferguson SS, Zhang J, Barak LS, Caron MG. Life Sci; 1998 Aug 15; 62(17-18):1561-5. PubMed ID: 9585136 [Abstract] [Full Text] [Related]
19. Quantification of beta adrenergic receptor subtypes in beta-arrestin knockout mouse airways. Hegde A, Strachan RT, Walker JK. PLoS One; 2015 Aug 15; 10(2):e0116458. PubMed ID: 25658948 [Abstract] [Full Text] [Related]
20. A structural basis for how ligand binding site changes can allosterically regulate GPCR signaling and engender functional selectivity. Sanchez-Soto M, Verma RK, Willette BKA, Gonye EC, Moore AM, Moritz AE, Boateng CA, Yano H, Free RB, Shi L, Sibley DR. Sci Signal; 2020 Feb 04; 13(617):. PubMed ID: 32019899 [Abstract] [Full Text] [Related] Page: [Next] [New Search]